若盒中装有同一型号的灯泡共10只,其中有8只合格品,2只次品
(1)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率;
(2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数的分布列和数学期望
(1);(2)X的分布列如下表:X 1 2 3 p
解析试题分析:(1)由于10只灯泡中有2只是次品,所以从中取一次恰好为次品的概率为:
有放回连续取3次,则为3次独立重复试验,由独立重复试验概率公式得:
(2)由于盒只有2只灯泡是次品,所以最多取3次即可取得正品,由此知X的可能取值为1、2、3
X=1,表示第一次取到正品;X=2,表示第一次取到次品第二次取到正品;X=3表示第一次第二次取到次品第三次取到正品,由此即可得X的分布列进而求得X的期望
试题解析:(1)设一次取次品记为事件A,由古典概型概率公式得: (2分)
有放回连续取3次,其中2次取得次品记为事件B,由独立重复试验得:
(5分)
(2)依据知X的可能取值为1 2 3 (6分)
且 (7分)
(8分)
(9分)
则X的分布列如下表:
(10分) X 1 2 3 p
(12分)
考点:1、古典概型;2、随机变量的分布列及期望
科目:高中数学 来源: 题型:解答题
某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;
(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X名男同学.
(1)求X的分布列;
(2)求去执行任务的同学中有男有女的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某篮球运动员在最近几场大赛中罚球投篮的结果如下:
投篮次数n | 8 | 10 | 12 | 9 | 10 | 16 |
进球次数m | 6 | 8 | 9 | 7 | 7 | 12 |
进球频率m/n | | | | | | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.
(1)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件;
(2)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X,求X的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.
(1)写出数量积X的所有可能取值;
(2)分别求小波去下棋的概率和不去唱歌的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
袋中装有大小相同的黑球和白球共个,从中任取个都是白球的概率为.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取 ,每次摸取个球,取出的球不放回,直到其中有一人取到白球时终止.用表示取球终止时取球的总次数.
(1)求袋中原有白球的个数;
(2)求随机变量的概率分布及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是,,且各轮次通过与否相互独立.
(1)设该选手参赛的轮次为ξ,求ξ的分布列.
(2)对于(1)中的ξ,设“函数f(x)=3sinπ(x∈R)是偶函数”为事件D,求事件D发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱)
(1)求在一次游戏中
①摸出3个白球的概率;②获奖的概率.
(2)求在两次游戏中获奖次数X的分布列及数学期望E(X).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com