精英家教网 > 高中数学 > 题目详情
若loga2=m,loga3=n,求a2m+n的值.
分析:由loga2=m,loga3=n,知am=2,an=3,由指数的运算法则知a2m+n=(am2•an,由此能求出结果.
解答:解:∵loga2=m,loga3=n,
∴am=2,an=3,
∴a2m+n=(am2•an
=4×3
=12.
所求表达式的值为:12
点评:本题考查指数式和对数式的互化,解题时要认真审题,注意指数运算法则的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列4个命题:
①函数f(x)=x|x|+ax+m是奇函数的充要条件是m=0:
②若函数f(x)=log(ax+1)的定义域是{x|x<l},则a<-1;
③若loga2<logb2,则
lim
n→∞
an-bn
an+bn
=1(其中n∈N+);
④圆:x2+y2-10x+4y-5=0上任意点M关于直线ax-y-5a=2的对称点,M′也在该圆上填上所有正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

给出下列4个命题:
①函数f(x)=x|x|+ax+m是奇函数的充要条件是m=0:
②若函数f(x)=log(ax+1)的定义域是{x|x<l},则a<-1;
③若loga2<logb2,则数学公式数学公式=1(其中n∈N+);
④圆:x2+y2-10x+4y-5=0上任意点M关于直线ax-y-5a=2的对称点,M′也在该圆上填上所有正确命题的序号是 ________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列4个命题:
①函数f(x)=x|x|+ax+m是奇函数的充要条件是m=0:
②若函数f(x)=log(ax+1)的定义域是{x|x<l},则a<-1;
③若loga2<logb2,则
lim
n→∞
an-bn
an+bn
=1(其中n∈N+);
④圆:x2+y2-10x+4y-5=0上任意点M关于直线ax-y-5a=2的对称点,M′也在该圆上填上所有正确命题的序号是 ______.

查看答案和解析>>

科目:高中数学 来源:2010年新教材高考数学模拟题详解精编试卷(5)(解析版) 题型:解答题

给出下列4个命题:
①函数f(x)=x|x|+ax+m是奇函数的充要条件是m=0:
②若函数f(x)=log(ax+1)的定义域是{x|x<l},则a<-1;
③若loga2<logb2,则=1(其中n∈N+);
④圆:x2+y2-10x+4y-5=0上任意点M关于直线ax-y-5a=2的对称点,M′也在该圆上填上所有正确命题的序号是    

查看答案和解析>>

同步练习册答案