精英家教网 > 高中数学 > 题目详情
7.以平面直角坐标系xOy的原点为极点,x轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线C在该极坐标系下的极坐标方程为ρ=4$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(1)求曲线C的直角坐标方程;
(2)设点P(x,y)在曲线C上,当x-y取得最小值时,求点P的极坐标.(ρ>0,0≤θ<2π)

分析 (1)曲线C的极坐标方程为ρ2=4ρcosθ+4ρsinθ,能求出曲线C的直角坐标方程.
(2)利用圆的参数方程得$x-y=2\sqrt{2}(cosα-sinα)$+4=4sin($α+\frac{3π}{4}$)+4,由此能求出当x-y取得最小值时点P的极坐标.

解答 解:(1)∵曲线C的极坐标方程为ρ=4$\sqrt{2}$cos(θ+$\frac{π}{4}$)=4cosθ-4sinθ,
∴ρ2=4ρcosθ-4ρsinθ,
∴x2+y2=4x-4y,即(x-2)2+(y+2)2=8.
(2)∵点P(x,y)在曲线C:(x-2)2+(y+2)2=8上,
∴$\left\{\begin{array}{l}{x=2+2\sqrt{2}cosα}\\{y=-2+2\sqrt{2}sinα}\end{array}\right.$,0≤α<2π.
∴$x-y=2\sqrt{2}(cosα-sinα)$+4=4sin($α+\frac{3π}{4}$)+4,
∴当$α+\frac{3π}{4}$=$\frac{3π}{2}$,$α=\frac{3π}{4}$时,x-y取最小值0,
此时$\left\{\begin{array}{l}{x=2+2\sqrt{2}×cos\frac{3π}{4}=0}\\{y=-2+2\sqrt{2}sin\frac{3π}{4}=0}\end{array}\right.$,∴P(0,0),
∴ρ=0,$θ=\frac{π}{2}$,∴点P的极坐标P(0,$\frac{π}{2}$).

点评 本题考查曲线的直角坐标方程的求法,考查点的极坐标的求法,是基础题,解题时要认真审题,注意极坐标和直角坐标互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.对于以下四个命题:
①若函数f(x)=logax(a>0,a≠1)在其定义域内是减函数,则loga2<0;
②设函数f(x)=2x+$\frac{1}{2x}$-1(x<0),则函数f(x)有最小值1;
③若向量$\overrightarrow a=(1,k)$,$\overrightarrow b=(-2,6)$,$\overrightarrow{a}$∥$\overrightarrow{b}$,则k=-3;
④函数y=(sinx+cosx)2-1的最小正周期是2π.
其中正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{1}{|x|-1}$-k(k是常数)没有零点,则k的取值范围是-1<k≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.判断函数f(x)=x2-2|x|+1的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点P到F(4,0)的距离与到直线x=-5的距离相等,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某组有12名学生,其中男,女生各占一半,把全组学生分成人数相等的两小组,求每小组里男、女生人数相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=$\frac{3}{2}$x+2与双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{9}=1$的位置关系是(  )
A.相切B.相交C.相离D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=log2x,x∈[$\frac{1}{2}$,2],在区间[$\frac{1}{2}$,2]上任取一点x0,使f(x0)>0的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,用与圆柱的母线成60°角的平面截圆柱得到的截口曲线是椭圆,则该椭圆的离心率为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案