精英家教网 > 高中数学 > 题目详情
△ABC的外接圆的圆心为O,半径为2,
OA
+
AB
+
AC
=0且|
OA
|=|
AB
|
,则向量
CA
CB
方向上的投影为
3
3
分析:根据
OA
+
AB
+
AC
=0得
OB
=
CA
,可得四边形OBAC是平行四边形,结合|
OA
|=|
AB
|
得到四边形OBAC是边长为2的菱形且∠ABO=∠AC0=60°,从而得到∠ACB=
1
2
∠AC0=30°,利用向量投影的定义即可算出答案.
解答:解:
OA
+
AB
+
AC
=0,
OA
+
AB
=-
AC
,即
OB
=
CA
,可得四边形OBAC是平行四边形,
∵△ABC的外接圆的圆心为O,半径为2,得|
OA
|=|
OB
|=|
AB
|

∴四边形OBAC是边长为2的菱形,且∠ABO=∠AC0=60°,
因此,∠ACB=
1
2
∠AC0=30°,
∴向量
CA
CB
方向上的投影为:
|AC|
cos∠ACB
=2cos30°=
3

故答案为:
3
点评:本题给出三角形外接圆满足的向量等式,求向量的投影,着重考查了向量的加法法则、向量数量积的运算性质和向量在几何中的应用等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知三点A(-2,0)、B(2,0)C(1,
3
)
,△ABC的外接圆为圆,椭圆
x2
4
+
y2
2
=1
的右焦点为F.
(1)求圆M的方程;
(2)若点P为圆M上异于A、B的任意一点,过原点O作PF的垂线交直线x=2
2
于点Q,试判断直线PQ与圆M的位置关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•佛山一模)已知A(-2,0),B(2,0),C(m,n).
(1)若m=1,n=
3
,求△ABC的外接圆的方程;
(2)若以线段AB为直径的圆O过点C(异于点A,B),直线x=2交直线AC于点R,线段BR的中点为D,试判断直线CD与圆O的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,1),B,C是x轴上两点,且|BC|=6(B在C的左侧).设△ABC的外接圆的圆心为M.
(Ⅰ)已知
AB
AC
=-4
,试求直线AB的方程;
(Ⅱ)当圆M与直线y=9相切时,求圆M的方程;
(Ⅲ)设|AB|=l1,|AC|=l2s=
l1
l2
+
l2
l1
,试求s的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)如图,圆O是△ABC的外接圆,过点C作圆O的切线交BA的延长线于点D.若CD=
3
,AB=AC=2,则线段AD的长是
1
1
;圆O的半径是
2
2

查看答案和解析>>

科目:高中数学 来源:2012年北京市房山区良乡中学高三数学会考模拟试卷(4)(解析版) 题型:解答题

已知点A(0,1),B,C是x轴上两点,且|BC|=6(B在C的左侧).设△ABC的外接圆的圆心为M.
(Ⅰ)已知,试求直线AB的方程;
(Ⅱ)当圆M与直线y=9相切时,求圆M的方程;
(Ⅲ)设|AB|=l1,|AC|=l2,试求s的最大值.

查看答案和解析>>

同步练习册答案