【题目】已知函数f(x)=ex﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为 .
【答案】(﹣1,3)
【解析】解:根据题意,令g(x)=f(x)﹣1=ex﹣e﹣x,
有g(﹣x)=f(﹣x)﹣1=e﹣x﹣ex=﹣g(x),则g(x)为奇函数,
对于g(x)=ex﹣e﹣x,其导数g′(x)=ex+e﹣x>0,则g(x)为增函数,
且g(0)=e0﹣e0=0,
f(2x﹣1)+f(4﹣x2)>2f(2x﹣1)﹣1>﹣f(4﹣x2)+1f(2x﹣1)>﹣[f(4﹣x2)﹣1]g(2x﹣1)>g(x2﹣4),
又由函数g(x)为增函数,
则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0
解可得:﹣1<x<3,
即实数x的取值范围为(﹣1,3);
所以答案是:(﹣1,3).
【考点精析】利用奇偶性与单调性的综合对题目进行判断即可得到答案,需要熟知奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.
科目:高中数学 来源: 题型:
【题目】下列四个集合中,是空集的是( )
A.{x|x+3=3}
B.{(x,y)|y2=﹣x2 , x,y∈R}
C.{x|x2﹣x+1=0,x∈R}
D.{x|x2≤0}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A.“至少有一个红球”与“都是黑球”
B.“至少有一个黑球”与“都是黑球”
C.“至少有一个黑球”与“至少有1个红球”
D.“恰有1个黑球”与“恰有2个黑球”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】老师给出一个函数,请三位同学各说出了这个函数的一条性质:
①此函数为偶函数;②定义域为{x∈R|x≠0};③在(0,+∞)上为增函数.
老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个这样的函数 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com