精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\frac{1}{3}x_{\;}$2+alnx(a∈R),若函数f(x)的图象在x=2处的切线方程为x-y+b=0,则实数a=$-\frac{1}{3}$.

分析 根据题意和求导公式求出f′(x),由导数的几何意义和切线的方程,求出a的值即可.

解答 解:由题意得,f(x)=$\frac{1}{3}x_{\;}$2+alnx,
则f′(x)=$\frac{2}{3}$x+$\frac{a}{x}$,
∵在x=2处的切线方程为x-y+b=0,∴$\frac{2}{3}$×2+$\frac{a}{2}$=1,
解得a=$-\frac{1}{3}$,
故答案为:-$\frac{1}{3}$.

点评 本题考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.“直线l与平面l∩α=P相交于点P”用集合语言表示为l∩α=P.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an},{bn}满足a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{b_n}{{1-{a_n}^2}}$.
(1)求b1,b2,b3,b4
(2)求证:数列$\left\{{\frac{1}{{{b_n}-1}}}\right\}$是等差数列,并求出数列{bn}通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求证:Sn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=a3x-2(a>0,a≠1)的图象过定点(  )
A.(0,$\frac{2}{3}$)B.(0,1)C.($\frac{2}{3}$,1)D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在区间$[{-\frac{π}{2},\frac{π}{2}}]$上随机取一个数x,sinx的值介于$\frac{1}{2}$到1之间的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设a,b>0,且a≠b,求证:a3+b3>a2b+ab2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.图是三个正态分布X~N(0,0.01),Y~N(0,1),Z~N(0,2.25)的密度曲线,则三个随机变量X,Y,Z对应曲线分别是图中的①、②、③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=sinπx,则当-1≤x<0时,f(x)=-$\frac{1}{2}$sinπx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知随机变量X服从二项分布X~B(6,$\frac{1}{3}$),则P(X=2)等于(  )
A.$\frac{13}{16}$B.$\frac{4}{243}$C.$\frac{13}{243}$D.$\frac{80}{243}$

查看答案和解析>>

同步练习册答案