精英家教网 > 高中数学 > 题目详情
6.因式分解:6(2p-q)2-11(q-2p)+3.

分析 利用“+字相乘法”即可得出.

解答 解:6(2p-q)2-11(q-2p)+3
=6(2p-q)2+11(2p-q)+3
=(6p-3q+1)(2p-q+3).

点评 本题考查了因式分解方法,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在四棱锥P-ABCD中,∠ABC=$\frac{π}{2}$,∠BAC=∠CAD=$\frac{π}{3}$,PA⊥平面ABCD,E为PD的中点,PA=2AB=2,CD=2$\sqrt{3}$.
(1)若F为PC的中点,求证:平面PAC⊥平面AEF;
(2)求平面EAC与平面DAC夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x2+1)的定义域为[-1,1],则f(lgx)的定义域为(  )
A.[-1,1]B.[1,2]C.[10,100]D.[0,lg2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.集合A={0,1,2},B={a,b},从集合A到集合B有8个不同的映射.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx+mx2(m∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0,f′(x)为f(x)的导函数,求证:f′($\frac{a+b}{2}$)<$\frac{f(a)-f(b)}{a-b}$<f′(b);
(Ⅲ)求证:$\frac{2}{3}+\frac{2}{5}+\frac{2}{7}+…+\frac{2}{2n+1}$<ln(n+1)<1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知角α的终边上一个点P(4a,3a)(a≠0),求2sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知1,2,3,4,5,6,六个数字,排成2行3列,且要求第一行的最大数比第二行的最大数要大,第一行的最小数要比第二行的最小数也要大,则所有的排列方法种数有(  )
A.144B.480C.216D.432

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某市在2 015年2月份的高三期末考试中对数学成绩数据统计显示,全市10000名学生的成绩服从正态分布N (120,25),现某校随机抽取了50名学生的数学成绩分析,结果这50名同学的成绩全部介于80分到140分之间现将结果按如下方式分为6组,第一组[85,95),第二组[95,105),…第六组[135,145],得到如图所示的频率分布直方图.
(I)试估计该校数学的平均成绩;
(Ⅱ)这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X,求X的分布列和期望.
附:若 X~N(μ,σ2),则P(u-3σ<X<u+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.二次函数f(x)=ax2+bx+c(a,b,c∈Z)的图象向左平移1个单位后关于y轴对称.方程f(x)-x=0的两根为α、β,且0<α<2<β<4,β-α=$\sqrt{5}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设函数g(x)=x3-3x2-6x+m,对?x1∈[-2,2],?x2∈[-2,2],都有f(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

同步练习册答案