平面内与两定点
连线的斜率之积等于非零常数m的点的轨迹,加
上A1、A2两点所在所面的曲线C可以是圆、椭圆或双曲线.
(Ⅰ)求曲线C的方程,并讨论C的形状与m的位置关系;
(Ⅱ)当m=-1时,对应的曲线为C1:对给定的
,对应的曲线为C2,
设F1、F2是C2的两个焦点,试问:在C1上,是
否存在点N,使得△F1NF2的面
积
,若存在,求
的值;若不存在,请说明理由.
科目:高中数学 来源:2012-2013学年海南省琼海市高三下学期第一次月考理科数学试卷(解析版) 题型:解答题
平面内与两定点
连线的斜率之积等于非零常数
的点的轨迹,加上
两点,所成的曲线
可以是圆,椭圆或双曲线.
(Ⅰ)求曲线
的方程,并讨论
的形状与
值的关系;
(Ⅱ)当
时,对应的曲线为
;对给定的
,对应的曲线为
,若曲线
的斜率为
的切线与曲线
相交于
两点,且
(
为坐标原点),求曲线
的方程.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年宁夏高三第六次月考理科数学试卷 题型:解答题
平面内与两定点
连线的斜率之积等于非零常数
的点的轨迹,加上
两点,所成的曲线
可以是圆,椭圆或双曲线.
(I)求曲线
的方程,并讨论
的形状与
值的关系.
(Ⅱ)当
时,对应的曲线为
;对给定的
,对应的曲线为
,若曲线
的斜率为
的切线与曲线
相交于
两点,且
(
为坐标原点),求曲线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
平面内与两定点
连线的斜率之积等于非零常数
的点的轨迹,加上
两点,所成的曲线
可以是圆,椭圆或双曲线.
(Ⅰ)求曲线
的方程,并讨论
的形状与
值的关系;
(Ⅱ)当
时,对应的曲线为
;对给定的
,对应的曲线为
,若曲线
的斜率为
的切线与曲线
相交于
两点,且
(
为坐标原点),求曲线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
平面内与两定点
连线的斜率之积等于常数
(
的点的轨迹,连同
两点所成的曲线为C.
(Ⅰ)求曲线C的方程,并讨论C的形状;
(II)设
,
,对应的曲线是
,已知动直线
与椭圆
交于
、
两不同点,且
,其中O为坐标原点,探究
是否为定值,写出解答过程。
查看答案和解析>>
科目:高中数学 来源:宁夏银川一中2011-2012学年高三第六次月考试题(数学理) 题型:解答题
平面内与两定点
连线的斜率之积等于非零常数
的点的轨迹,加上
两点,所成的曲线
可以是圆,椭圆或双曲线.
(I)求曲线
的方程,并讨论
的形状与
值的关系.
(Ⅱ)当
时,对应的曲线为
;对给定的
,对应的曲线为
,若曲线
的斜率为
的切线与曲线
相交于
两点,且
(
为坐标原点),求曲线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com