精英家教网 > 高中数学 > 题目详情

已知函f(x)=ax2-ex(a∈R).
(Ⅰ)a=1时,试判断f(x)的单调性并给予证明;
(Ⅱ)若f(x)有两个极值点x1,x2(x1<x2).
(i) 求实数a的取值范围;
(ii)证明:-数学公式. (注:e是自然对数的底数)

解:(Ⅰ)当a=1时,f(x)=x2-ex,f(x)在R上单调递减.
事实上,要证f(x)=x2-ex在R上为减函数,只要证明f(x)≤0对?x∈R恒成立即可,
设g(x)=f(x)=2x-ex,则g(x)=2-ex
当x=ln2时,g(x)=0,
当x∈(-∞,ln2)时,g(x)>0,当x∈(ln2,+∞)时,g(x)<0.
∴函数g(x)在(-∞,ln2)上为增函数,在(ln2,+∞)上为减函数.
∴f(x)max=g(x)max=g(ln2)=2ln2-2<0,故f(x)<0恒成立
所以f(x)在R上单调递减;
(Ⅱ)(i)由f(x)=ax2-ex,所以,f(x)=2ax-ex
若f(x)有两个极值点x1,x2,则x1,x2是方程f(x)=0的两个根,
故方程2ax-ex=0有两个根x1,x2
又因为x=0显然不是该方程的根,所以方程有两个根,
,得
若x<0时,h(x)<0且h(x)<0,h(x)单调递减.
若x>0时,h(x)>0.
当0<x<1时h(x)<0,h(x)单调递减,
当x>1时h(x)>0,h(x)单调递增.
要使方程有两个根,需2a>h(1)=e,故且0<x1<1<x2
故a的取值范围为
(ii)证明:由f(x1)=0,得:,故,x1∈(0,1)
=,x1∈(0,1)
设s(t)=(0<t<1),则,s(t)在(0,1)上单调递减
故s(1)<s(t)<s(0),即
分析:(Ⅰ)把a=1代入函数解析式,求出函数的导函数,把导函数二次求导后,求出导函数的最大值,得到导函数的最大值小于0,从而得到原函数是实数集上的减函数;
(Ⅱ)(i)把函数f(x)=ax2-ex有两个极值点转化为其导函数f(x)=2ax-ex有两个根,分离变量a后分析右侧函数的单调性,该函数先减后增有极小值,然后根据图象的交点情况得到a的范围;
(ii)由x1是原函数的导函数的根,把x1代入导函数解析式,用x1表示a,然后把f(x1)的表达式中的a替换,得到关于x1的函数式后再利用求导判断单调性,从而得到要征得结论.
点评:本题考查了利用导数研究函数的单调性,考查了函数在某点取得极值的条件,解答此题的关键是利用二次求导判断函数导函数的符号,这也是此类问题经常用到的方法.此题是有一定难度题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函f(x)=ex-x (e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
12
≤x≤2
}且M∩P≠∅求实数a的取值范围;
(3)已知n∈N+,且Sn=∫n0f(x)dx,是否存在等差数列{an}和首项为f(I)公比大于0的等比数列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,请求出数列{an}、{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax(a>0,a≠1)在[-2,2]上函数值总小于2,则实数a的取值范围是
(
2
2
,1)∪(1,
2
)
(
2
2
,1)∪(1,
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)=In(ax+1)+
1
2
x2
-
x
a
+b(a,b为常数,a>0)
(1)若函数f(x)的图象在点(0,f(0))处的切线方程y=2,求a、b的值;
(2)当b=2时若函数f(x)在区间[0,+∞)上的最小值为2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax(a>0,a≠1)在[-2,2]上函数值总小于2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)=e2+ax,g(x)=exlnx
(1)设曲线y=f(x)在x=1处得切线与直x+(e-1)y=1垂直,求a的值.
(2)若对任意实x≥0f(x)>0恒成立,确定实数a的取值范围.
(3)a=1时,是否存x0∈[1,e],使曲线C:y=g(x)-f(x)在点x=x0处得切线与y轴垂直?若存在求x0的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案