精英家教网 > 高中数学 > 题目详情
2.某校从参加高二年级期末考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下频率分布表.根据相关信息回答下列问题:
(1)求a,b的值,并画出频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)用分层抽样的方法在分数在[60,80)内学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人的分数在[70,80)内的概率.

分析 (1)a=6,b=0.25,并画出频率分布直方图;
(2)利用同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)求出基本事件的个数,利用古典概型概率公式可得结论.

解答 解:(1)a=6,b=0.25…(1分)
…(4分)
(2)45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71 …(8分)
(3)由题意知[60,70)中抽2人,[70,80)中抽取4人,则任取两人共有${C}_{6}^{2}$=15种取法(10分)
至多有一人在[70,80)总有9种情况$P(A)=\frac{9}{15}=\frac{3}{5}$…(12分)
答:分数在[70,80)内的频率为0.3,本次考试的平均分为71,至多有1人的分数在[70,80)内的概率为$\frac{3}{5}$.

点评 本题主要考查了频率及频率分布直方图,以及平均数和概率的有关问题,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.等差数列{an}中,a3+a4=4,a5+a7=6,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图所示,已知矩形ABCD中,AB=3,BC=a,若PA⊥平面AC,在满足条件PE⊥DE的E点有两个时,a的取值范围是a>6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线l1:(a+3)x+y-4=0与直线l2:x+(a-1)y+4=0垂直,则直线l1在x轴上的截距是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆O的方程为x2+y2=5.
(1)P是直线y=$\frac{1}{2}$x-5上的动点,过P作圆O的两条切线PC、PD,切点为C、D,求证:直线CD过定点;
(2)若EF、GH为圆O的两条互相垂直的弦,垂足为M(1,1),求四边形EGFH面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线C的焦点为F1,F2,点P为双曲线上一点,若|PF2|=2|PF1|,∠PF1F2=60°,则双曲线的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{1+\sqrt{13}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(x-$\frac{2}{x}$)4(x-2)的展开式中,x2的系数为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.程序框如图所示,则该程序运行后输出n的值是(  )
A.2016B.2017C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,其中|$\overrightarrow{a}$=$\sqrt{2}$,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

同步练习册答案