| A. | {0} | B. | {0,$\frac{1}{2}$,1} | C. | {1,$\frac{1}{2}$} | D. | {0,$\frac{1}{2}$} |
分析 当q=1时,Sn=na1,S2n=2na1,即可得出$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{2n}}$.当q≠1时,Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$,可得$\frac{{S}_{n}}{{S}_{2n}}$=$\frac{1}{1+{q}^{n}}$.对q分类讨论即可得出.
解答 解:当q=1时,Sn=na1,S2n=2na1,∴$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{2n}}$=$\frac{1}{2}$.
当q≠1时,Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$,
∴$\frac{{S}_{n}}{{S}_{2n}}$=$\frac{\frac{{a}_{1}(1-{q}^{n})}{1-q}}{\frac{{a}_{1}(1-{q}^{2n})}{1-q}}$=$\frac{1}{1+{q}^{n}}$.
∴S=$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{2n}}$=$\underset{lim}{n→∞}\frac{1}{1+{q}^{n}}$,
当q>1时,S=0.
当0<|q|<1时,S=1.
当q<-1时,S=0.
综上可得:集合M={0,1,$\frac{1}{2}$}.
故选:B.
点评 本题考查了等比数列的性质及其前n项和公式、数列极限性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com