若数列
满足
(
为正常数;
),则称
为“等方比数列”.
甲:数列
是等方比数列; 乙:数列
是等比数列,则
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
科目:高中数学 来源: 题型:
若数列
满足:
是常数),则称数列
为二阶线性递推数列,且定义方程
为数列
的特征方程,方程的根称为特征根; 数列
的通项公式
均可用特征根求得:
①若方程
有两相异实根
,则数列通项可以写成
,(其中
是待定常数);
②若方程
有两相同实根
,则数列通项可以写成
,(其中
是待定常数);
再利用
可求得
,进而求得
.
根据上述结论求下列问题:
(1)当
,
(
)时,求数列
的通项公式;
(2)当
,
(
)时,求数列
的通项公式;
(3)当
,
(
)时,记
,若
能被数
整除,求所有满足条件的正整数
的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分)
若数列
满足:
是常数),则称数列
为二阶线性递推数列,且定义方程
为数列
的特征方程,方程的根称为特征根; 数列
的通项公式
均可用特征根求得:
①若方程
有两相异实根
,则数列通项可以写成
,(其中
是待定常数);
②若方程
有两相同实根
,则数列通项可以写成
,(其中
是待定常数);
再利用
可求得
,进而求得
.
根据上述结论求下列问题:
(1)当
,
(
)时,求数列
的通项公式;
(2)当
,
(
)时,求数列
的通项公式;
(3)当
,
(
)时,记
,若
能被数
整除,求所有满足条件的正整数
的取值集合.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省佛山市高三教学质量检测(一)文科数学 题型:解答题
设
,圆
:
与
轴正半轴的交点为
,与曲线
的交点为
,直线
与
轴的交点为
.
(1)用
表示
和
;
(2)若数列
满足:
.
①求常数
的值使数列
成等比数列;
②比较
与
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
若数列
满足
(
为正常数;
),则称
为“等方比数列”.
甲:数列
是等方比数列; 乙:数列
是等比数列,则
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com