精英家教网 > 高中数学 > 题目详情

如图,四棱锥的底面为矩形,且

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的正弦值

 

 

 

【答案】

(I)证明:由题意得 

,则     ……………………………3分

平面, 故平面平面………………6分

(Ⅱ)解法1:

 

 

以点A为坐标原点,AB所在的直线为y轴建立空间直角坐标系如右图示,则,, 

可得, ……………………………8分

平面ABCD的单位法向量为,………10分

设直线PC与平面ABCD所成角为,则 …13分

,即直线PC与平面ABCD所成角的正弦值 …………………………………14分

解法2:

 

 

由(I)知平面,∵

∴平面ABCD⊥平面PAB, 在平面PAB内,过点P作PE⊥AB,垂足为E,则PE⊥平面ABCD,连结EC,则∠PCE为直线PC与平面ABCD所成的角,在Rt△PEA中,∵∠PAE=60°,PA=1,∴,又

在Rt△PEC中.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥的底面为菱形,PA⊥底面ABCD,E、F分别是AB与PD的中点.
(1)求证:PC⊥BD;
(2)求证:AF∥平面PEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

如图,四棱锥的底面为正方形,侧棱底面,且分别是线段的中点.

(Ⅰ)求证://平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年湖南长沙重点中学高三上学期第四次月考文科数学试卷(解析版) 题型:解答题

如图,四棱锥的底面为矩形,且,,,

(Ⅰ)平面PAD与平面PAB是否垂直?并说明理由;

(Ⅱ)求直线PC与平面ABCD所成角的正弦值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省六校联合体高三第二次联考数学理卷 题型:解答题

(本小题满分14分)

    如图,四棱锥的底面为菱形,平面分别为的中点。

   (I)求证:平面

   (Ⅱ)求三棱锥的体积;

   (Ⅲ)求平面与平面所成的锐二面角大小的余弦值。

 

 

查看答案和解析>>

同步练习册答案