操作变换记为P1(x,y),其规则为:P1(x,y)=(x+y,x-y),且规定:Pn(x,y)=P1(Pn-1(x,y)),n是大于1的整数,如:P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),则P2012(1,-1)=________.
(2
1006,-2
1006)
分析:计算P
1(1,-1)、P
2(1,-1)、P
3(1,-1)、P
4(1,-1),得出结论:当n为奇数时,P
n (1,-1)=(0,

),当n为偶数时,P
n (1,-1)=(

,

),由此求得P
2012(1,-1)的值.
解答:∵P
1(x,y)=(x+y,x-y),且规定:P
n(x,y)=P
1(P
n-1(x,y)),
P
1(1,-1)=(0,2 ),P
2(1,-1)=P
1(P
1(1,-1))=P
1(0,2)=(2,-2),
P
3(1,-1)=P
1(P
2(1,-1))=P
1(2,-2)=(0,4),
P
4(1,-1)=P
1(P
3(1,-1))=P
1(0,4)=(4,-4),…
可见,当n为奇数时,P
n (1,-1)=(0,-

),当n为偶数时,P
n (1,-1)=(

,-

),
∴P
2012(1,-1)=(2
1006,-2
1006),
故答案为 (2
1006,-2
1006).
点评:本题主要考查函数的对应法则的应用,属于基础题.