精英家教网 > 高中数学 > 题目详情
(2008•嘉定区一模)函数f(x)=(sinx+cosx)cosx(x∈R)的最小正周期为
π
π
分析:先利用乘法分配律给括号中各项都乘以cosx,然后分别利用二倍角的正弦、余弦函数公式进行化简,前两项提取
2
2
后,再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,找出ω的值,代入周期公式T=
ω
即可求出函数的最小正周期.
解答:解:函数f(x)=(sinx+cosx)cosx
=sinxcosx+cos2x
=
1
2
sin2x+
1
2
(cos2x+1)
=
1
2
(sin2x+cos2x)+
1
2

=
2
2
sin(2x+
π
4
)+
1
2

∵ω=2,∴T=
2
=π.
故答案为:π
点评:此题考查了三角函数的周期性及其求法,涉及的知识有:二倍角的正弦、余弦函数公式,两角和与差的正弦函数公式,以及特殊角的三角函数值,其中利用三角函数的恒等变形把函数解析式化为一个角的三角函数是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•嘉定区一模)若a、b为正实数,则a>b是a2>b2的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•嘉定区一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PA⊥平面ABCD,PC与平面ABCD所成角的大小为arctan2,M为PA的中点.
(1)求四棱锥P-ABCD的体积;
(2)求异面直线BM与PC所成角的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•嘉定区一模)设正数数列{an}的前n项和为Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an}的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整数m,使得不等式Sn-1005>
a
2
n
2
对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由;
(3)请构造一个与数列{Sn}有关的数列{un},使得
lim
n→∞
(u1+u2+…+un)
存在,并求出这个极限值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•嘉定区一模)定义在R上的函数f(x)满足f(x+2)=2f(x),当x∈[0,2]时,f(x)=x2-2x,则当x∈[-4,-2]时,函数f(x)的最小值为
-
1
4
-
1
4

查看答案和解析>>

同步练习册答案