已知圆O的方程为x2+y2=1,直线l1过点A(3,0),且与圆O相切.
(1)求直线l1的方程;
(2)设圆O与x轴交于P,Q两点,M是圆O上异于P,Q的任意一点,过点A且与x轴垂直的直线为l2,直线PM交直线l2于点P′,直线QM交直线l2于点Q′.求证:以P′Q′为直径的圆C总过定点,并求出定点坐标.
[解析] (1)∵直线l1过点A(3,0),∴设直线l1的方程为y=k(x-3),即kx-y-3k=0,
则圆心O(0,0)到直线l1的距离为d==1,
解得k=±.
∴直线l1的方程为y=±(x-3).
(2)在圆O的方程x2+y2=1中,令y=0得,x=±1,即P(-1,0),Q(1,0).又直线l2过点A与x轴垂直,∴直线l2的方程为x=3,设M(s,t),则直线PM的方程为y=(x+1).
解方程组得,P′.
同理可得Q′.
∴以P′Q′为直径的圆C的方程为(x-3)(x-3)+=0,
又s2+t2=1,∴整理得(x2+y2-6x+1)+y=0,
若圆C经过定点,则y=0,从而有x2-6x+1=0,
解得x=3±2,
∴圆C总经过的定点坐标为(3±2,0).,
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com