精英家教网 > 高中数学 > 题目详情
(2013•湖南)如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(Ⅰ)证明:AC⊥B1D;
(Ⅱ)求直线B1C1与平面ACD1所成的角的正弦值.
分析:(I)根据直棱柱性质,得BB1⊥平面ABCD,从而AC⊥BB1,结合BB1∩BD=B,证出AC⊥平面BB1D,从而得到AC⊥B1D;
(II)根据题意得AD∥B1C1,可得直线B1C1与平面ACD1所成的角即为直线AD与平面ACD1所成的角.连接A1D,利用线面垂直的性质与判定证出AD1⊥平面A1B1D,从而可得AD1⊥B1D.由AC⊥B1D,可得B1D⊥平面ACD1,从而得到∠ADB1与AD与平面ACD1所成的角互余.在直角梯形ABCD中,根据Rt△ABC∽Rt△DAB,算出AB=
3
,最后在Rt△AB1D中算出B1D=
21
,可得cos∠ADB1=
21
7
,由此即可得出直线B1C1与平面ACD1所成的角的正弦值.
解答:解:(I)∵BB1⊥平面ABCD,AC?平面ABCD,∴AC⊥BB1
又∵AC⊥BD,BB1、BD是平面BB1D内的相交直线
∴AC⊥平面BB1D,
∵B1D?平面BB1D,∴AC⊥B1D;
(II)∵AD∥BC,B1C1∥BC,∴AD∥B1C1
由此可得:直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成
的角(记为θ),连接A1D,
∵直棱柱ABCD-A1B1C1D1中,∠BAD=∠B1A1D1=90°,
∴B1A1⊥平面A1D1DA,结合AD1?平面A1D1DA,得B1A1⊥AD1
又∵AD=AA1=3,∴四边形A1D1DA是正方形,可得AD1⊥A1D
∵B1A1、A1D是平面A1B1D内的相交直线,∴AD1⊥平面A1B1D,可得AD1⊥B1D,
由(I)知AC⊥B1D,结合AD1∩AC=A可得B1D⊥平面ACD1,从而得到∠ADB1=90°-θ,
∵在直角梯形ABCD中,AC⊥BD,∴∠BAC=∠ADB,从而得到Rt△ABC∽Rt△DAB
因此,
AB
DA
=
BC
AB
,可得AB=
BC•DA
=
3

连接AB1,可得△AB1D是直角三角形,
∴B1D2=B1B2+BD2=B1B2+AB2+BD2=21,B1D=
21

在Rt△AB1D中,cos∠ADB1=
AD
B1D
=
3
21
=
21
7

即cos(90°-θ)=sinθ=
21
7
,可得直线B1C1与平面ACD1所成的角的正弦值为
21
7
点评:本题给出直四棱柱,求证异面直线垂直并求直线与平面所成角的正弦之值,着重考查了直四棱柱的性质、线面垂直的判定与性质和直线与平面所成角的定义等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖南)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图1),若光线QR经过△ABC的重心,则AP等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)如图,在半径为
7
的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X 1 2 3 4
Y 51 48 45 42
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;
(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)如图.在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=
2
,AA1=3,D是BC的中点,点E在棱BB1上运动.
(1)证明:AD⊥C1E;
(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积.

查看答案和解析>>

同步练习册答案