分析 把$\overrightarrow{EF}$分解为用已知向量表示的形式,可作图帮助分析已知向量与未知向量之间的关系,要注意中点向量表示中的特殊含意
解答
解:如图:
∵$\overrightarrow{EF}=\overrightarrow{EA}+\overrightarrow{AB}+\overrightarrow{BF}$
又$\overrightarrow{EF}=\overrightarrow{EA}+\overrightarrow{CD}+\overrightarrow{DF}$,
两式相加,得
2$\overrightarrow{EF}=(\overrightarrow{EA}+\overrightarrow{EC})+(\overrightarrow{AB}+\overrightarrow{CD})$+($\overrightarrow{BF}+\overrightarrow{DF}$)
∵E是AC的中点,
故$\overrightarrow{EA}+\overrightarrow{EC}=\overrightarrow{0}$,
同理,$\overrightarrow{BF}+\overrightarrow{DF}=\overrightarrow{0}$
∴2$\overrightarrow{EF}=\overrightarrow{AB}+\overrightarrow{CD}$=($\overrightarrow{a}$-2$\overrightarrow{c}$)+(5$\overrightarrow{a}$+6$\overrightarrow{b}$-8$\overrightarrow{c}$)=6$\overrightarrow{a}$+6$\overrightarrow{b}$-10$\overrightarrow{c}$),
∴$\overrightarrow{EF}$=3$\overrightarrow{a}$+3$\overrightarrow{b}$-5$\overrightarrow{c}$),
故答案为:3$\overrightarrow{a}$+3$\overrightarrow{b}$-5$\overrightarrow{c}$.
点评 本题考查的知识点是平面向量加(减)法的几何意义,处理的关键是:用已知向量表示未知向量的关键是将未知向量“凑配”成用已知向量表示的形式.其核心是向量加减法的“三角形”法则
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 边 | B. | 中线 | C. | 高 | D. | 角平分线 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}-1$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{5}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com