精英家教网 > 高中数学 > 题目详情
设集合P={b,1},Q={c,1,2},P⊆Q,若 b,c∈{2,3,4,5,6,7,8,9},
(1)求 b=c 的概率;
(2)求方程x2+bx+c=0有实根的概率.
分析:我们根据集合的包含关系判断及应用,结合集合P={b,1},Q={c,1,2},P⊆Q,若 b,c∈{2,3,4,5,6,7,8,9},我们易计算出满足条件的基本事件总数.
(1)再列举出所有满足条件b=c 的基本事件个数,代入古典概型公式,即可得到答案.
(2)根据一元二次方程根的个数的判断,我们易得到满足条件的基本事件个数,代入古典概型公式,即可得到答案.
解答:解:(1)∵P⊆Q,P={b,1},Q={c,1,2}
∴b=c≠2,或b=2
故满足条件的基本事件共有:
(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9)
(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),共14种
其中满足条件b=c的有:
(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),共7种
故b=c 的概率P=
1
2

(2)若方程x2+bx+c=0有实根
则b2-4c≥0
①当b=c≠2时,满足条件的基本事件有:(4,4),(5,5),(6,6),(7,7),(8,8),(9,9)
②当b=2时,满足条件的基本事件有零个
故方程x2+bx+c=0有实根的概率P=
6
14
=
3
7
点评:本题考查的知识点古典概型及其概率计算公式,集合的包含关系判断及应用,本题易忽略集合P={b,1},Q={c,1,2},P⊆Q,将基本事件总数误认为8×8=64个.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合P={b,1},Q={c,1,2},P⊆Q,若b,c∈{2,3,4,5,6,7,8,9},则b=c的概率是(  )
A、
1
8
B、
1
4
C、
1
2
D、
3
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合P={b,1},Q={c,1,2},P⊆Q,若b∈{2,3,4,5}.c∈{3,4,5}.
(1)求b=c的概率;          
(2)求方程x2+bx+c=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合P={b,1},Q={c,1,2},P⊆Q.用随机变量ζ表示方程x2+bx+c=0实根的个数(重根按一个计),若b,c∈{1,2,3,4,5 6,7,8,9}.
(1)求方程x2+bx+c=0有实根的概率;
(2)求ζ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设集合P={b,1},Q={c,1,2},P⊆Q,若b∈{2,3,4,5}.c∈{3,4,5}.
(1)求b=c的概率;     
(2)求方程x2+bx+c=0有实根的概率.

查看答案和解析>>

同步练习册答案