精英家教网 > 高中数学 > 题目详情
19.已知直线l1:(m-2)x-y+5=0与l2:(m-2)x+(3-m)y+2=0平行,则实数m的值为(  )
A.2或4B.1或4C.1或2D.4

分析 对m分类讨论,利用两条直线平行的充要条件即可得出.

解答 解:∵l1∥l2,∴m-2=0时,两条直线化为:-y+5=0,y+2=0,此时两条直线平行.
m-2≠0时,$\frac{m-2}{m-2}=\frac{3-m}{-1}$≠$\frac{2}{5}$,解得m=4.
综上可得:m=2或4.
故选:A.

点评 本题考查了两条直线平行的充要条件,考查了分类讨论方法、推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知sin(α+$\frac{π}{3}$)=sinα,则tanα=(  )
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,BC=2AD=4,AB=CD,∠ABC=60°,N为线段PC上一点,CN=3NP,M为AD的中点.
(1)证明:MN∥平面PAB;
(2)求点N到平面 PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:矩形AA1B1B,且AB=2AA1=2,C1,C分别是A1B1、AB的中点,D为C1C中点,将矩形AA1B1B沿着直线C1C折成一个60°的二面角,如图所示.
(1)求证:AB1⊥A1D;
(2)求二面角B-A1D-B1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,侧棱垂直于底面的三棱柱ABC-A1B1C1中,AB⊥AC,AA1+AB+AC=3,AB=AC=t(t>0),P是侧棱AA1上的动点.
(1)当AA1=AB=AC时,求证:A1C⊥BC1
(2)试求三棱锥P-BCC1的体积V取得最大值时的t值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=f(x)的图象关于直线x=1对称,当x<1时,f(x)=|($\frac{1}{2}$)x-1|,那么当x>1时,函数f(x)的递增区间是(  )
A.(-∞,0)B.(1,2)C.(2,+∞)D.(2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在正三棱锥P-ABC中,D,E分别是AB,BC的中点.
(1)求证:DE∥平面PAC;
(2)求证:AB⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知抛物线y2=2px(p>0)上一点M(1,b)到焦点F的距离为2,则b=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合A={x∈N|5+4x-x2>0},B={x|x<3},则A∩B等于(  )
A.B.{1,2}C.[0,3)D.{0,1,2}

查看答案和解析>>

同步练习册答案