精英家教网 > 高中数学 > 题目详情

某年级先后举办了数学、历史、音乐的讲座,其中有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座.求听讲座的人数.

解:68+75+61-(17+12+9)+6
=204-38+6,
=172(人).
答:听讲座的人数172人.
故答案为:172
分析:由于有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,则这三个组共有75+68+61人,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座,根据容斥原理可知,听讲座的共有68+75+61-(17+12+9)+6人.
点评:A类和B类和C类元素个数总和=A类元素个数+B类元素个数+C类元素个数-既是A类又是B类的元素个数-既是A类又是C类的元素个数-既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某年级先后举办了数学、历史、音乐的讲座,其中有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座.求听讲座的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:044

某年级先后举办了数学、历史、音乐的讲座,其中有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座.求听讲座的人数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某年级先后举办了数学、历史、音乐的讲座,其中有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座.求听讲座的人数.

查看答案和解析>>

同步练习册答案