精英家教网 > 高中数学 > 题目详情
(2008•上海一模)用1,2,3,4,5,6六个数字组成没有重复数字的六位数,要求任何相邻两个数字的奇偶不同,这样的六位数共有
72
72
个(用数字作答).
分析:第一步先将1,3、5排列,共有A33=6种排法;第二步再将2,4、6插空排列,不能空着两个偶数之间的空,先用两个元素排列中间两个空,在把两端的空位选一个放第三个元素,得到结果.
解答:解:由题意知本题是一个分步计数问题,
第一步先将1,3、5排列,共有A33=6种排法;
第二步再将2,4、6插空排列,不能空着两个偶数之间的空,先用两个元素排列中间两个空,
在把两端的空位选一个放第三个元素,共有2A32=12种排法;
由分步乘法计数原理得共有6×12=72
故答案为:72
点评:本题考查的是分步计数原理,本题解题的关键是看出做完一件事需要分成几步,每一步包括几种方法,得到结果,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•上海一模)观察数列:
①1,-1,1,-1,…;
②正整数依次被4除所得余数构成的数列1,2,3,0,1,2,3,0,…;
③an=tan
3
,n=1,2,3,…
(1)对以上这些数列所共有的周期特征,请你类比周期函数的定义,为这类数列下一个周期数列的定义:对于数列{an},如果
存在正整数T
存在正整数T
,对于一切正整数n都满足
an+T=an
an+T=an
成立,则称数列{an}是以T为周期的周期数列;
(2)若数列{an}满足an+2=an+1-an,n∈N*,Sn为{an}的前n项和,且S2=2008,S3=2010,证明{an}为周期数列,并求S2008
(3)若数列{an}的首项a1=p,p∈[0,
1
2
),且an+1=2an(1-an),n∈N*,判断数列{an}是否为周期数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海一模)规定矩阵A3=A•A•A,若矩阵
1x
01
3
=
11
01
,则x的值是
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海一模)已知{an}为等差数列,a2+a8=12,则a5=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海一模)若函数y=f(x)存在反函数y=f-1(x),且函数y=tan
πx
6
-f(x)
的图象过点(2,
3
-3)
,则函数y=f-1(x)的图象一定过点
(3,2)
(3,2)

查看答案和解析>>

同步练习册答案