精英家教网 > 高中数学 > 题目详情
设数列{an}的通项公式为 an=kn-1.已知a1+a2+a3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求k的值;
(2)令bn=log2a3n+1,(n=1,2,…,),求数列{bn}的前n项和Tn
分析:(1)由a1+a2+a3=7,及a1+3,3a2,a3+4构成等差数列,得
a1+a2+a3=7
(a1+3)+(a3+4)
2
=3a2.
,由此可求得a2,再由an=kn-1可求得k值;
(2)由(1)可求得an,进而得到a3n+1,bn,易判断{bn}为等差数列,由等差数列的前n项和公式可求得Tn
解答:解:(1)由a1+3,3a2,a3+4构成等差数列,得
(a1+3)+(a3+4)
2
=3a2

又a1+a2+a3=7,∴有
a1+a2+a3=7
(a1+3)+(a3+4)
2
=3a2.
,解得a2=2,
由 an=kn-1,得a2=k=2,∴k=2,
(2)由(1)得为an=2n-1,∴a3n+1=23n
又bn=log2a3n+1(n=1,2,…,),
bn=log2a3n+1=log223n=3n
又bn+1-bn=3,
∴{bn}是首项为3,公差为3的等差数列,
∴Tn=b1+b2+…+bn=
n(b1+bn)
2
=
n(3+3n)
2
=
3n(n+1)
2
点评:本题考查等差数列的通项公式、求和公式,考查学生的运算求解能力,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整数的个数.
(1)求an并且证明{an}是等差数列;
(2)设m、k、p∈N*,m+p=2k,求证:
1
Sm
+
1
Sp
2
Sk

(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式an=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,那么an+1-an等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项an=n2+λn+1,已知对任意n∈N*,都有an+1>an,则实数λ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式an=f(n)是一个函数,则它的定义域是(  )

查看答案和解析>>

同步练习册答案