精英家教网 > 高中数学 > 题目详情
已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x+1,则当x<0时,f(x)的解析式为
f(x)=x3+2x-1
f(x)=x3+2x-1
分析:考虑x<0时,-x>0,利用已知条件求f(-x)的解析式,又f(x)是奇函数,可得x<0时f(x)的解析式.
解答:解:∵函数f(x)是奇函数,
∴f(-x)=-f(x)
当x<0时,-x>0,
∵x>0时,f(x)=x3+2x+1,
∴f(-x)=(-x)3-2x+1=-x3-2x+1,
∴-f(x)=-x3-2x+1,
∴f(x)=x3+2x-1.
即x<0时,f(x)=x3+2x-1.
故答案为:f(x)=x3+2x-1
点评:本题考查了函数的奇偶性与解析式的求法问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,且在区间[1,2]上单调递减,则f(x)在区间[-2,-1]上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,函数g(x)=f(x-2)+3,那么g(x)的图象的对称中心的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,且当x≥0时,f(x)=ln(x+1),则当x<0时,f(x)的解析式为
f(x)=-ln(-x+1)
f(x)=-ln(-x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,f(x)的定义域为(-∞,+∞).当x<0时,f(x)=
ln(-ex)
x
.这里,e为自然对数的底数.
(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)如果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)试判断 ln
1
n+1
2(
1
2
+
2
3
+…+
n
n+1
)-n
的大小关系,这里n∈N*,并加以证明.

查看答案和解析>>

同步练习册答案