精英家教网 > 高中数学 > 题目详情

(本小题满分13分)

若函数对任意的,均有,则称函数具有性质.

(Ⅰ)判断下面两个函数是否具有性质,并说明理由.

;    ②.

(Ⅱ)若函数具有性质,且),

求证:对任意

(Ⅲ)在(Ⅱ)的条件下,是否对任意均有.若成立给出证明,若不成立给出反例.

(本小题满分13分)

(Ⅰ)证明:①函数具有性质.                     ……………1分

因为,                                 ……………3分

此函数为具有性质.

②函数不具有性质.                                 ……………4分

例如,当时,

,                             ……………5分

所以,

此函数不具有性质.

(Ⅱ)假设中第一个大于的值,     ……………6分

因为函数具有性质

所以,对于任意,均有

所以

所以

矛盾,

所以,对任意的.                   ……………9分

(Ⅲ)不成立.

例如                              ……………10分

证明:当为有理数时,均为有理数,

为无理数时,均为无理数,

所以,函数对任意的,均有

即函数具有性质.                                      ……………12分

而当)且当为无理数时,.

所以,在(Ⅱ)的条件下,“对任意均有”不成立.……………13分

(其他反例仿此给分.

,等.)

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案