【题目】用m,n表示两条不同的直线,α,β表示两个不同的平面,给出下列命题: ①若m⊥n,m⊥α,则n∥α;
②若m∥α,α⊥β则m⊥β;
③若m⊥β,α⊥β,则m∥α;
④若m⊥n,m⊥α,n⊥β,则α⊥β,
其中,正确命题是( )
A.①②
B.②③
C.③④
D.④
科目:高中数学 来源: 题型:
【题目】对于两个图形F1 , F2 , 我们将图象F1上任意一点与图形F2上的任意一点间的距离中的最小值,叫作图形F1与F2图形的距离,若两个函数图象的距离小于1,则这两个函数互为“可及函数”,给出下列几对函数,其中互为“可及函数”的是 . (写出所有正确命题的编号) ①f(x)=cosx,g(x)=2;
②f(x)=ex . g(x)=x;
③f(x)=log2(x2﹣2x+5),g(x)=sin ﹣x;
④f(x)=x+ ,g(x)=lnx+2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R)
(1)若函数f(x)的图象过点(﹣2,1),且函数f(x)有且只有一个零点,求f(x)的表达式;
(2)在(1)的条件下,当x∈(﹣1,2)时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点 .
(1)求sin2α﹣tanα的值;
(2)若函数f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函数 在区间 上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】刘徽(约公元 225 年—295 年)是魏晋时期伟大的数学家,中国古典数学理论的奠基人之一,他的杰作《九章算术注》和《海岛算经》是中国宝贵的古代数学遗产. 《九章算术·商功》中有这样一段话:“斜解立方,得两壍堵. 斜解壍堵,其一为阳马,一为鳖臑.” 刘徽注:“此术臑者,背节也,或曰半阳马,其形有似鳖肘,故以名云.” 其实这里所谓的“鳖臑(biē nào)”,就是在对长方体进行分割时所产生的四个面都为直角三角形的三棱锥. 如图,在三棱锥中, 垂直于平面, 垂直于,且 ,则三棱锥的外接球的球面面积为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,且AB=4,BC=CD=ED=EA=2.
(1)求二面角E﹣AB﹣D的正切值;
(2)在线段CE上是否存在一点F,使得平面EDC⊥平面BDF?若存在,求 的值,若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com