精英家教网 > 高中数学 > 题目详情
(2012•杨浦区一模)已知△ABC的三个顶点在抛物线Γ:x2=y上运动.
(1)求Γ的焦点坐标;
(2)若点A在坐标原点,且∠BAC=
π
2
,点M在BC上,且
AM
BC
= 0
,求点M的轨迹方程;
(3)试研究:是否存在一条边所在直线的斜率为
2
的正三角形ABC,若存在,求出这个正三角形ABC的边长,若不存在,说明理由.
分析:(1)由抛物线的方程,可得抛物线的焦点在y轴上,开口向上,故可得焦点坐标;
(2)设点M的坐标为(x,y),设出AB、AC方程与抛物线方程联立,确定B、C的坐标,从而可得BC的方程,利用
AM
BC
=0
,即可求得点M的轨迹方程;
(3)设A、B、C的坐标,求得△ABC的三边所在直线的斜率,若AB边所在直线的斜率为
2
,AB边所在直线和x轴的正方向所成角为α(0°<α<90°),则tanα=
2
,得出坐标之间的关系,即可求得|AB|.
解答:解:(1)由x2=y可得焦点在y轴的正半轴上,且2p=1,所以,焦点坐标为(0,
1
4
)         …(3分)
(2)设点M的坐标为(x,y),AB方程为y=kx,由∠BAC=
π
2
得AC方程为y=-
1
k
x
,则
y=kx
y=x2
得B(k,k2),同理可得C(-
1
k
1
k2

∴BC方程为y-k2=
k2-
1
k2
k+
1
k
(x-k)
恒过定点P(0,1),…(10分)
AM
=(x,y),
MN
=(-x,1-y)

AM
BC
=0

AM
MN
=0

所以,-x×x+y(1-y)=0,即y2+x2-y=0(x≠0)
(3)设A(p,p2),B(q,q2),C(r,r2),△ABC的三边所在直线AB,BC,CA的斜率分别是p+q,q+r,r+p------①…(12分)
若AB边所在直线的斜率为
2
,AB边所在直线和x轴的正方向所成角为α(0°<α<90°),则tanα=
2

所以
q+r=tan(α-60°)
r+p=tan(α+60°)
                                         …(14分)
∴q-p=tan(α-60°)-tan(α+60°)=
6
3
5
-----②
又p+q=tanα=
2
--------------③…(16分)
所以,|AB|=
(q-p)2+(q2-p2)2
=
18
5
  …(18分)
点评:本题考查抛物线的性质,考查轨迹方程的求解,考查向量知识的运用,考查直线的斜率的计算,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•杨浦区一模)已知f(x)是R上的偶函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区一模)设函数f(x)=log2(2x+1)的反函数为y=f-1(x),若关于x的方程f-1(x)=m+f(x)在[1,2]上有解,则实数m的取值范围是
[log2
1
3
log2
3
5
]
[log2
1
3
log2
3
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区一模)若直线l:ax+by=1与圆C:x2+y2=1有两个不同的交点,则点P(a,b)与圆C的位置关系是
P在圆外
P在圆外

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区一模)若函数y=f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称y=f(x)为“Ω函数”.
(1)判断下列函数,是否为“Ω函数”,并说明理由;
①f(x)=x3         ②f(x)=2x
(2)已知函数f(x)=tanx是一个“Ω函数”,求出所有的有序实数对(a,b).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区一模)计算:
lim
n→∞
(1-
2n
n+3
)
=
-1
-1

查看答案和解析>>

同步练习册答案