精英家教网 > 高中数学 > 题目详情
7.已知定义在R上的函数y=f(x)满足:函数y=f(x-1)的图象关于直线x=1对称,且当x∈(-∞,0),f(x)+xf′(x)<0(f′(x)是函数f(x)的导函数)成立.若$a=(sin\frac{1}{2})•f(sin\frac{1}{2})$,b=(ln2)•$f(ln2),c=(lo{g_{\frac{1}{2}}}\frac{1}{4})•$$f(lo{g_{\frac{1}{2}}}\frac{1}{4})$,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

分析 由导数性质推导出当x∈(-∞,0)或x∈(0,+∞)时,函数y=xf(x)单调递减.由此能求出结果.

解答 解:∵函数y=f(x-1)的图象关于直线x=1对称,
∴y=f(x)关于y轴对称,
∴函数y=xf(x)为奇函数.
∵[xf(x)]'=f(x)+xf'(x),
∴当x∈(-∞,0)时,[xf(x)]'=f(x)+xf'(x)<0,函数y=xf(x)单调递减,
当x∈(0,+∞)时,函数y=xf(x)单调递减.
∵$0<sin\frac{1}{2}<\frac{1}{2}$,$1>ln2>ln\sqrt{e}=\frac{1}{2}$,${log_{\frac{1}{2}}}\frac{1}{4}=2$,$0<sin\frac{1}{2}<ln2<{log_{\frac{1}{2}}}\frac{1}{4}$,
∴a>b>c.
故选:A.

点评 本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意导数性质、函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.若$\overrightarrow{a}$,$\overrightarrow{b}$共线,则$\overrightarrow{a}$•$\overrightarrow{b}$=±|$\overrightarrow{a}$||$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=3sin(ωx+φ)(ω≠0)对于任意的实数x,都有f(1+x)=f(1-x),则f(1)=±3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.当a为任意实数时,直线(2a+3)x+y-4a+2=0恒过定点P,则过点P的抛物线的标准方程是y2=32x或x2=-$\frac{1}{2}$y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.如果三棱柱的体积为$12\sqrt{3}$,圆柱的底面直径与母线长相等,则圆柱的侧面积为(  )
A.12πB.14πC.16πD.18π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线y=2与曲线y=x2-|x|+a有四个交点,则a的取值范围是(2,$\frac{9}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(2cos2x,1),$\overrightarrow{b}$=$({1,m+\sqrt{3}sin2x})$,且函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(Ⅰ)求f(x)解析式
(Ⅱ)若x∈$[{0,\frac{π}{2}}]$时,f(x)最大值为2,求m的值,并指出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示,ABCD是以原点O为中心、边长为2的正方形,M点坐标为(-4,3),当正方形在满足上述条件下转动时,$\overrightarrow{MC}•\overrightarrow{MD}$的取值范围是[15,35].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,矩形ABCD的边AB=m,BC=4,PA⊥平面ABCD,PA=3,现有数据:
①$m=\frac{3}{2}$;②m=3;③m=4;④$m=\sqrt{5}$.若在BC边上存在点Q(Q不在端点B、C处),使PQ⊥QD,则m可以取(  )
A.①②B.①②③C.②④D.

查看答案和解析>>

同步练习册答案