精英家教网 > 高中数学 > 题目详情
函数y=sinx(1+tanx•tan
x2
)
的最小正周期为
 
分析:首先进行三角函数的恒等变换,利用半角公式整理出只含有一倍角的形式,把sinx乘到括号里,根据同角的三角函数之间的关系得到最简结果,得到周期.
解答:解:∵y=sinx(1+tanx•tan
x
2
)

=sinx(1+tanx•
1-cosx
sinx
)

=sinx+tanx(1-cosx)
=sinx+tanx-sinx
=tanx
∴T=π
故答案为:π
点评:本题考查三角函数的周期性及其求法,本题解题的关键是把式子进行恒等变形,整理出最简单的形式,再利用周期公式得到结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三个函数y=sinx+1,y=
x2-2x+2+t
,y=
1
2
(x+
1-t
x
)(x>0)
,它们各自的最小值恰好是函数
f(x)=x3+ax2+bx+c的三个零点(其中t是常数,且0<t<1)
(1)求证:a2=2b+2
(2)设f(x)=x3+ax2+bx+c的两个极值点分别为(x1,m),(x2,n),若|x1-x2|=
6
3
,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题
①命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”;
②命题“存在x0∈R,2x0≤0”的否定是“对任意的x∈R,2x>0”;
③将函数y=|x+1|的图象按向量
a
=(-1,0)平移,得到的图象的函数表达式为y=|x|;
④将函数y=sinx+1的图象上的所有点的纵坐标变为原来的两倍(横坐标不变),得到的图象的函数表达式为y=2sinx+1.
以上命题正确的是
①②
①②
.(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinx+1在x∈[0,2π]上的单调递减区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数y=lgsin2x+
9-x2
的定义域;
(2)求函数y=sinx+
1-sinx
的值域.

查看答案和解析>>

同步练习册答案