精英家教网 > 高中数学 > 题目详情

一个多面体的直观图和三视图(主视图、左视图、俯视图)如图所示,M、N分别为A1B、B1C1的中点.
(Ⅰ)求证:MN∥平面ACC1A1
(Ⅱ)求证:MN⊥平面A1BC.

解:由题意可知,这个几何体是直三棱柱,且AC⊥BC,AC=BC=CC1
(Ⅰ)连接AC1,AB1
由直三棱柱的性质得AA1⊥平面A1B1C1,所以AA1⊥A1B1
则四边形ABB1A1为矩形.
由矩形性质得AB1过A1B的中点M
在△AB1C1中,由中位线性质得MN∥AC1
又AC1?平面ACC1A1,MN?平面ACC1A1
所以MN∥平面ACC1A1
(Ⅱ)因为BC⊥平面ACC1A1,AC1?平面ACC1A1
所以BC⊥AC1
在正方形ACC1A1中,A1C⊥AC1
又因为BC∩A1C=C,所以AC1⊥平面A1BC
由MN∥AC1,得MN⊥平面A1BC
分析:(Ⅰ)先根据题中的三视图得到AC⊥BC,AC=BC=CC1,然后连接AC1和AB1,再由直三棱柱的性质得到四边形ABB1A1为矩形,再由中位线定理可得到MN∥AC1,最后根据线面平行的判定定理可证明MN∥平面ACC1A1
(Ⅱ)先根据线面垂直的性质定理可得到BC⊥AC1,再根据A1CA⊥AC1,根据线面垂直的判定定理得到AC1⊥平面A1BC,最后根据MN∥AC1,得MN⊥平面A1BC,从而得证.
点评:本题主要考查中位线定理、线面平行的判定定理和线面垂直的判定定理.考查对立体几何基本定理的综合应用和空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.
(Ⅰ)求证:GN⊥AC;
(Ⅱ)求二面角F-MC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图如图所示精英家教网
(1)求证:PA⊥BD;
(2)是否在线段PD上存在一Q点,使二面角Q-AC-D的平面角为30°,设λ=
DQDP
,若存在,求λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图如图所示:

(I)求证:PA⊥BD;
(II)连接AC、BD交于点O,在线段PD上是否存在一点Q,使直线OQ与平面ABCD所成的角为30°?若存在,求
|DQ||DP|
的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图如图所示,其中M、G分别是AB、DF的中点.
(1)在AD上(含A、D端点)确定一点P,使得GP∥平面FMC;
(2)一只苍蝇在几何体ADF-BCE内自由飞翔,求它飞入几何体F-AMCD内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图如图所示,其中M、G分别是AB、DF的中点.精英家教网
(1)求证:CM⊥平面FDM;
(2)在线段AD上(含A、D端点)确定一点P,使得GP∥平面FMC,并给出证明.

查看答案和解析>>

同步练习册答案