精英家教网 > 高中数学 > 题目详情
如图,一个半圆和长方形组成的铁皮,长方形的边AD为半圆的直径,O为半圆的圆心,AB=1,BC=2,现要将此铁皮剪出一个等腰三角形PMN,其底边MN⊥BC.
(1)设∠MOD=30°,求三角形铁皮PMN的面积;
(2)求剪下的铁皮三角形PMN面积的最大值.
【答案】分析:(1)设MN交AD交于Q点由∠MOD=30°,利用锐角三角函数可求MQ,OQ,进而可求MN,AQ,代入S△PMN=MN•AQ可求
(2)设∠MOQ=θ,由θ∈[0,],结合锐角三角函数的定义可求MQ=sinθ,OQ=cosθ,代入三角形的面积公式S△PMN=MN•AQ=(1+sinθ)(1+cosθ)展开利用换元法,转化为二次函数的最值求解
解答:解:(1)设MN交AD交于Q点
∵∠MOD=30°,
∴MQ=,OQ=(算出一个得2分)
S△PMN=MN•AQ=××(1+)=…(6分)
(2)设∠MOQ=θ,∴θ∈[0,],MQ=sinθ,OQ=cosθ
∴S△PMN=MN•AQ=(1+sinθ)(1+cosθ)
=(1+sinθcosθ+sinθ+cosθ)….(11分)
令sinθ+cosθ=t∈[1,],
∴S△PMN=(t+1+
θ=,当t=
∴S△PMN的最大值为.…..…(14分)
点评:本题主要考查了三角函数的定义的应用及利用三角函数求解函数的最值,换元法的应用是求解的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,一个半圆和长方形组成的铁皮,长方形的边AD为半圆的直径,O为半圆的圆心,AB=1,BC=2,现要将此铁皮剪出一个等腰三角形PMN,其底边MN⊥BC.
(1)设∠MOD=30°,求三角形铁皮PMN的面积;
(2)求剪下的铁皮三角形PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2014届湖北省高三10月统一阶段性考试理科数学试卷(解析版) 题型:解答题

如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,现要将此铁皮剪出一个等腰三角形,其底边.

(1)设,求三角形铁皮的面积;

(2)求剪下的铁皮三角形的面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖北省高三10月统一阶段性考试文科数学试卷(解析版) 题型:解答题

如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,现要将此铁皮剪出一个等腰三角形,其底边.

(1)设,求三角形铁皮的面积;

(2)求剪下的铁皮三角形的面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,现要将此铁皮剪出一个等腰三角形,其底边.

(1)设,求三角形铁皮的面积;

(2)求剪下的铁皮三角形的面积的最大值.

查看答案和解析>>

同步练习册答案