精英家教网 > 高中数学 > 题目详情

【题目】考拉兹猜想又名3n+1猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能得到1.阅读如图所示的程序框图,运行相应程序,输出的结果i=(
A.4
B.5
C.6
D.7

【答案】B
【解析】解:当a=4时,不满足退出循环的条件,进入循环后,由于a值不满足“a是奇数”,故a=5,i=2; 当a=5时,不满足退出循环的条件,进入循环后,由于a值满足“a是奇数”,故a=16,i=3;
当a=16时,不满足退出循环的条件,进入循环后,由于a值不满足“a是奇数”,故a=8,i=4;
当a=8时,不满足退出循环的条件,进入循环后,由于a值不满足“a是奇数”,故a=4,i=5;
当a=4时,满足退出循环的条件,故输出结果为:5
故选B.
由已知中的程序框图可知:该程序的功能是利用条件结构和循环结构的嵌套计算并输出i值,模拟程序的运行过程可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且当x>0时,f(x)=lg ,若对任意实数t∈[ ,2],都有f(t+a)﹣f(t﹣1)≥0恒成立,则实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 上有最大值1和最小值0,设 .
(1)求 的值;
(2)若不等式 上有解,求实数 的取值范围;
(3)若方程 ( 为自然对数的底数)有三个不同的实数解,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,下列图象中能表示定义域和值域都是 的函数的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为响应国家节能减排建设的号召,唤起人们从自己身边的小事做起,开展了以“再小的力量也是一种支持”为主题的宣传教育活动,其中有两则公益广告: ①80部手机,一年就会增加一吨二氧化氮的排放.
②人们在享受汽车带了的便捷舒适的同时,却不得不呼吸汽车排放的尾气.
活动组织者为了解是市民对这两则广告的宣传效果,随机对10﹣60岁的人群抽查了n人,并就两个问题对选取的市民进行提问,其抽样人数频率分布直方图如图所示,宣传效果调查结果如表所示.
宣传效果调查表

广告一

广告二

回答正
确人数

占本组
人数频率

回答正
确人数

占本组
人数频率

[10,20)

90

0.5

45

a

[20,30)

225

0.75

k

0.8

[30,40)

b

0.9

252

0.6

[40,50)

160

c

120

d

[50,60]

10

e

f

g


(1)分别写出n,a,b,c,d的值.
(2)若将表中的频率近似看作各年龄组正确回答广告内容的概率,规定正确回答广告一的内容得30元,广告二的内容得60元.组织者随机请一家庭的两成员(大人45岁,孩子17岁),指定大人回答广告一的内容,孩子回答广告二的内容,求该家庭获得奖金数ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,且
(1)当 时,解不等式
(2) 恒成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为 ;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为
(1)若走L1路线,求最多遇到1次红灯的概率;
(2)若走L2路线,求遇到红灯次数X的数学期望;
(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,M为BC的中点,BM=MC=2,AM=b﹣c,则△ABC面积最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(2,-1).
(1)求过P点且与原点距离为2的直线l的方程;
(2)求过P点且与原点距离最大的直线l的方程,最大距离是多少?

查看答案和解析>>

同步练习册答案