精英家教网 > 高中数学 > 题目详情
5.画出函数y=|tanx|+tanx的图象,并根据图象求出函数的主要性质.

分析 根据函数y的解析式,画出函数y的图象,结合图形求出它的定义域、值域和单调性、周期性即可.

解答 解:∵y=|tanx|+tanx=$\left\{\begin{array}{l}{2tanx,x∈[kπ,\frac{π}{2}+kπ),k∈Z}\\{0,x∈(-\frac{π}{2}+kπ,kπ),k∈Z}\end{array}\right.$,
∴画出函数y=|tanx|+tanx的图象,如图所示;
则该函数的定义域是{x|x≠$\frac{π}{2}$+kπ,k∈z},
值域是[0,+∞),
单调递增区间是[kπ,kπ+$\frac{π}{2}$),k∈z,
最小正周期是π.

点评 本题考查了正切函数的图象与性质的应用问题,也考查了数形结合思想的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M到集合N的函数关系的有(  )
A.①②③④B.①②③C.②③D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$(x>-1),设F(x)=f(x-4),且函数F(x)的零点在区间[a-1,a](a∈Z)内,则${(x+\frac{a}{2})}^{a}$的展开式中x3的系数为(  )
A.20B.15C.12D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.讨论三次方程x3-9x-a=0解的个数,其中a为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在等比数列{an}中,a3=$\frac{3}{2}$,S3=$\frac{9}{2}$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)记bn=log2$\frac{6}{{a}_{2n+1}}$,且{bn}为递增数列,若Cn=$\frac{1}{{{b}_{n}b}_{n+1}}$,求证:C1+C2+C3+…Cn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=sin($\frac{π}{2}$-2015x)是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x|x-a|+2x.若存在x0∈[1,3]满足f(x)≤2x+1,求所有的实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a=$\frac{ln3}{3}$、b=$\frac{1}{e}$、c=ln$\sqrt{2}$,则(  )
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x,y,z>0.a,b,c是x,y,z的-个排列.求证:$\frac{a}{x}+\frac{b}{y}+\frac{c}{z}$≥3.

查看答案和解析>>

同步练习册答案