精英家教网 > 高中数学 > 题目详情
4.下列函数定义域为(-∞,+∞)的是(  )
A.y=$\frac{1}{{x}^{2}}$B.y=$\sqrt{x+2}$C.y=$\root{3}{x}$D.y=$\sqrt{{x}^{2}-1}$

分析 判断选项函数的定义域,即可得到结果.

解答 解:y=$\frac{1}{{x}^{2}}$,x≠0,A不满足题意;
y=$\sqrt{x+2}$,x≥-2,B不满足题意;
y=$\root{3}{x}$;函数定义域为(-∞,+∞),成立;
y=$\sqrt{{x}^{2}-1}$,定义域为:(-∞,-1]∪[1,+∞)不满足题意.
故选:C.

点评 本题考查函数的定义域的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设△ABC的内角A,B,C所对边的长分别为a,b,c,若a:b:c=1:2:$\sqrt{7}$,则角C=(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=x2在区间[2,3]上的最大值与最小值的差为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.改描述法为列举法:
(1){大于1小于10的奇数}={3,5,7,9};
(2){x|0<x≤4,x∈N}={1,2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{x-1}{ax-1}$(x∈R,x≠$\frac{1}{a}$,a为给定的实数),求证:y=f(x)的图象关于直线y=x对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设双曲线的焦点坐标为(-6,0),(6,0),且双曲线过点A(-5,0),求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=x2-m,若f(0)=1,则m的值等于(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设$\overrightarrow{a}$⊥$\overrightarrow{b}$,<$\overrightarrow{a}$,$\overrightarrow{c}$>=$\frac{π}{3}$,<$\overrightarrow{b}$,$\overrightarrow{c}$>=$\frac{π}{2}$.且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=3,则向量$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$的模为$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设集合A={1,2},B={x|x2+2(a+1)x+(a2-5)=0}.
(1)若A∩B={2},求实数a的值;
(2)是否存在实数a,使A∩B=A?若存在,请求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案