精英家教网 > 高中数学 > 题目详情
已知A、B为两个锐角,且tanA•tanB=tanA+tanB+1,则cos(A+B)的值是
-
2
2
-
2
2
分析:由题意可得A+B∈(0,π),tanA+tanB=tanAtanB-1,求得tan(A+B)=
tanA+tanB
1-tanAtanB
=-1,可得A+B=
4
,从而求得 cos(A+B)的值.
解答:解:由于A、B为两个锐角,故A+B∈(0,π).
再由tanA•tanB=tanA+tanB+1,可得tanA+tanB=tanAtanB-1,
∴tan(A+B)=
tanA+tanB
1-tanAtanB
=-1,∴A+B=
4
,∴cos(A+B)=cos
4
=-
2
2

故答案为-
2
2
点评:本题主要考查两角和的正切公式的应用,根据三角函数的值求角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B为直角三角形的两个锐角,则sinA•sinB(  )
A、有最大值
1
2
和最小值0
B、有最小值
1
2
,无最大值
C、既无最大值也无最小值
D、有最大值
1
2
,无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下5个命题:
①曲线x2-(y-1)2=1按
a
=(1,-2)
平移可得曲线(x+1)2-(y-3)2=1;
②设A、B为两个定点,n为常数,|
PA
|-|
PB
|=n
,则动点P的轨迹为双曲线;
③若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,延长F1P到点M,使|F2P|=|PM|,则点M的轨迹是圆;
④A、B是平面内两定点,平面内一动点P满足向量
AB
AP
夹角为锐角θ,且满足 |
PB
| |
AB
| +
PA
AB
=0
,则点P的轨迹是圆(除去与直线AB的交点);
⑤已知正四面体A-BCD,动点P在△ABC内,且点P到平面BCD的距离与点P到点A的距离相等,则动点P的轨迹为椭圆的一部分.
其中所有真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
是两个非零向量,在下列四个说法中,正确的说法序号是
(1)(4)
(1)(4)

(1)|
a
|+|
b
|≥|
a
+
b
|
;  
(2)若
a
0
a
b
=0
,则
b
=
0

(3)若
a
b
>0
,则
a
b
夹角为锐角;
(4)若
a
b
夹角为θ,则|
b
|cosθ
表示向量
b
在向量
a
方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B为锐角三角形的两个内角,设m=cosB,n=sinA,则下列各式中正确的是(  )

查看答案和解析>>

同步练习册答案