精英家教网 > 高中数学 > 题目详情
记等差数列{an}的前n项和为Sn,已知a2+a4=6,S4=10.
(1)求数列{an}的通项公式;
(2)令bn=an•2n(n∈N*),求数列{bn}的前n项和Tn
分析:(1):利用待定系数法,设首项和公差,由a2+a4=6,S4=10,列方程组,可得数列首项和公差,从而得解.
(2):由an=n,bn=an•2n=n•2n可知,要求{bn}的前n项和,可利用错位相减的方法求得.(一个等差数列和一个等比数列对应项之积组成的数列,可用错位相减法求和)
解答:解:(Ⅰ)设等差数列{an}的公差为d,由a2+a4=6,S4=10,
可得
2a1+4d=6
4a1+
4×3
2
d=10
,(2分),
a1+2d=3
2a1+3d=5

解得
a1=1
d=1
,(4分)
∴an=a1+(n-1)d=1+(n-1)=n,
故所求等差数列{an}的通项公式为an=n.(5分)
(Ⅱ)依题意,bn=an•2n=n•2n
∴Tn=b1+b2++bn=1×2+2×22+3×23++(n-1)•2n-1+n•2n,(7分)
又2Tn=1×22+2×23+3×24+…+(n-1)•2n+n•2n+1,(9分)
两式相减得-Tn=(2+22+23++2n-1+2n)-n•2n+1(11分)=
2(1-2n)
1-2
-n•2n+1
=(1-n)•2n+1-2,(12分)
∴Tn=(n-1)•2n+1+2.(13分)
点评:本题是数列求通项和前n项和的题型,高考常见,其中:
(1)可利用利用待定系数法求解,这是解数列题的一般方法,要熟练掌握.
(2)对于一个等差数列和一个等比数列对应项之积组成的数列,可用错位相减法求和,这也是教材推导等比数列前n项和公式时的方法.另外数列求和的方法还有倒序相加,裂项相消,分组求和等方法,要熟练掌握.都是高考中常考的知识点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,若a1=
1
2
,S4=20,则S6=(  )
A、16B、24C、36D、48

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,设S3=12,且2a1,a2,a3+1成等比数列,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,若a1=
12
,S4=20,则S6=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州一模)记等差数列{an}的前n项和为Sn,若a9=10,则 S17=
170
170

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)记等差数列{an}的前n项和为Sn
(1)求证:数列{
Sn
n
}是等差数列;
(2)若a1=1,且对任意正整数n,k(n>k),都有
Sn+k
+
Sn-k
=2
Sn
成立,求数列{an}的通项公式;
(3)记bn=aan(a>0),求证:
b1+b2+…+bn
n
b1+bn
2

查看答案和解析>>

同步练习册答案