【答案】
分析:(Ⅰ)求导,令f′(x)=0得x=-a,以-a在[1,e]内,左,右分为三类来讨论,函数在[1,e]上的单调性,进而求出最值,令其等于
,求出a的值,由范围来取舍,得了a的值.
(Ⅱ)将f(x)代入不等式,分离出a,写在不等式的左边,设右边为函数h(x),求导,再求导,得出导数的正负,从而得出h'(x)的单调性,求最值,得出h'(x)的正负,得出h(x)的单调性,求出h(x)的最小值,得出a的取值范围.
解答:解:(Ⅰ)f′(x)=
+
=
令f′(x)<0得x<-a,令f′(x)>0,得x>-a,
①-a≤1,即a≥-1时,f(x)在[1,e]上单增,f(x)最小值=f(1)=-a=
,a=-
<-1,不符,舍;
②-a≥e,即a≤-e时,f(x)在[1,e]上单减,f(x)最小值=f(e)=1-
=
,a=-
>-e,不符,舍;
③1<-a<e,即-e<a<-1时,f(x)在[1,-a]上单减,在[-a,e]上单增,f(x)最小值=f(-a)=ln(-a)+1=
,a=-
,满足;
综上a=-
.
(Ⅱ)由题意,只需a>xlnx-x
3,x∈(1,+∞)恒成立,
令h(x)=xlnx-x
3,h'(x)=lnx+1-3x
2,h''(x)=
-6x=
<0 在(1,+∞)上恒成立,
∴h'(x)在(1,+∞)上单减,又h'(1)=-2<0,
∴h'(x)<0 在(1,+∞)上恒成立,h(x)在(1,+∞)上单减,又h(1)=-1,
∴h(x)<-1在(1,+∞)上恒成立,
∴a≥-1.
点评:会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值,要确定函数的单调性,注意分类讨论思想的应用,掌握不等式恒成立时所取的条件.