¸ø³öÏÂÁнáÂÛ£º

   £¨1£©Ôڻعé·ÖÎöÖУ¬¿ÉÓÃÏà¹ØÖ¸ÊýR2µÄÖµÅжÏÄ£Ð͵ÄÄâºÏЧ¹û£¬R2Ô½´ó£¬Ä£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ£»

   £¨2£©Ôڻعé·ÖÎöÖУ¬¿ÉÓÃ²Ð²îÆ½·½ºÍÅжÏÄ£Ð͵ÄÄâºÏЧ¹û£¬²Ð²îƽ·½ºÍÔ½´ó£¬Ä£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ£»

   £¨3£©Ôڻعé·ÖÎöÖУ¬¿ÉÓòвîͼÅжÏÄ£Ð͵ÄÄâºÏЧ¹û£¬²Ð²îµã±È½Ï¾ùÔȵØÂäÔÚˮƽµÄ´ø×´ÇøÓòÖУ¬ËµÃ÷ÕâÑùµÄÄ£ÐͱȽϺÏÊÊ£¬´ø×´ÇøÓòµÄ¿í¶ÈÔ½Õ­£¬ËµÃ÷Ä£Ð͵ÄÄâºÏ¾«¶ÈÔ½¸ß¡£

        ÆäÖнáÂÛÕýÈ·µÄÊÇ          ¡££¨°ÑËùÓÐÕýÈ·½áÂÛµÄÐòºÅÌîÉÏ£©

 

¡¾´ð°¸¡¿

£¨1£©£¨3£©

¡¾½âÎö¡¿ÂÔ

 

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ða£¬b£¬c£¬¸ø³öÏÂÁнáÂÛ£º
¢ÙA£¾B£¾C£¬ÔòsinA£¾sinB£¾sinC£»
¢ÚÈô
sinA
a
=
cosB
b
=
cosC
c
£¬¡÷ABCΪµÈ±ßÈý½ÇÐΣ»
¢Û±Ø´æÔÚA£¬B£¬C£¬Ê¹tanAtanBtanC£¼tanA+tanB+tanC³ÉÁ¢£»
¢ÜÈôa=40£¬b=20£¬B=25¡ã£¬¡÷ABC±ØÓÐÁ½½â£®
ÆäÖУ¬½áÂÛÕýÈ·µÄ±àºÅΪ
¢Ù¢Ü
¢Ù¢Ü
£¨Ð´³öËùÓÐÕýÈ·½áÂ۵ıàºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•²ýÍ¼ÏØÄ£Ä⣩¸ø³öÏÂÁнáÂÛ£¬ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
£¨2£©£¨3£©
£¨2£©£¨3£©

£¨1£©y=tanxÔÚÆä¶¨ÒåÓòÉÏÊÇÔöº¯Êý£»
£¨2£©º¯Êýy=|sin£¨2x+
¦Ð
3
£©|µÄ×îСÕýÖÜÆÚÊÇ
¦Ð
2
£»
£¨3£©º¯Êýy=cos£¨-x£©µÄµ¥µ÷ÔöÇø¼äÊÇ[-¦Ð+2k¦Ð£¬2k¦Ð]£¨k¡ÊZ£©£»
£¨4£©º¯Êýy=lg£¨sinx+
sin2x+1
£©ÓÐÎÞÆæÅ¼ÐÔ²»ÄÜÈ·¶¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•³É¶¼¶þÄ££©Èçͼ£¬Ôڰ뾶ΪlµÄÇòOÖУ®AB¡¢CDÊÇÁ½Ìõ»¥Ïà´¹Ö±µÄÖ±¾¶£¬°ë¾¶OP¡ÍÆ½ÃæABCD£®µãE¡¢F·Ö±ðΪ´óÔ²ÉϵÄÁÓ»¡
BP
¡¢
AC
µÄÖе㣬¸ø³öÏÂÁнáÂÛ£º
¢ÙÏòÁ¿
OE
ÔÚÏòÁ¿
OB
·½ÏòÉϵÄͶӰǡΪ
1
2
£»
¢ÚE¡¢FÁ½µãµÄÇòÃæ¾àÀëΪ
2¦Ð
3
£»
¢ÛÇòÃæÉϵ½E¡¢FÁ½µãµÈ¾àÀëµÄµãµÄ¹ì¼£ÊÇÁ½¸öµã£»
¢ÜÈôµãMΪ´óÔ²ÉϵÄÁÓ»¡
AD
µÄÖе㣬Ôò¹ýµãMÇÒÓëÖ±ÏßEF¡¢PC³ÉµÈ½ÇµÄÖ±ÏßÖ»ÓÐÈýÌõ£¬ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶¨ÒåÓòÊÇ£¨0£¬+¡Þ£©µÄº¯Êýf£¨x£©Âú×㣻
£¨1£©¶ÔÈÎÒâx¡Ê£¨0£¬+¡Þ£©£¬ºãÓÐf£¨3x£©=3f£¨x£©³ÉÁ¢£»
£¨2£©µ±x¡Ê£¨1£¬3]ʱ£¬f£¨x£©=3-x£®¸ø³öÏÂÁнáÂÛ£º
¢Ù¶ÔÈÎÒâm¡ÊZ£¬ÓÐf£¨3m£©=0£»
¢Úº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬+¡Þ£©£»
¢Û´æÔÚn¡ÊZ£¬Ê¹µÃf£¨3n+1£©=0£»
¢Ü¡°º¯Êýf£¨x£©ÔÚÇø¼ä£¨a£¬b£©Éϵ¥µ÷µÝ¼õ¡±µÄ³äÒªÌõ¼þÊÇ¡°?k¡ÊZ£¬Ê¹µÃ£¨a£¬b£©⊆£¨3k£¬3k+1£©£®¡±
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=1-
1-x2
£¬x¡Ê[0£¬1]¶ÔÓÚÂú×ã0£¼x1£¼x2£¼1µÄÈÎÒâx1£¬x2£¬¸ø³öÏÂÁнáÂÛ
¢Ù
f(x2)-f(x1)
x2-x1
£¼0
              ¢Úx2f£¨x1£©£¼x1f£¨x2£©
¢Û
f(x1)+f(x2)
2
£¾ f(
x1+x2
2
)
     ¢Üf£¨x£©¡Ü2x
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
 
£¨ÌîÉÏËùÓÐÕýȷ˵·¨µÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸