精英家教网 > 高中数学 > 题目详情
(2013•青岛二模)设函数y=f(x)在(-∞,+∞)内有定义,对于给定的实数k,定义函数g(x)=
f(x),f(x)≥k
k,f(x)<k
,设函数f(x)=x2+x+
1
ex
-3
,若对任意的x∈(-∞,+∞)恒有g(x)=f(x),则(  )
分析:由已知条件可得,k≤f(x)在(-∞,+∞)恒成立即k≤f(x)min,结合函数f(x)的性质可求函数f(x)的最小值.
解答:解:因为对于任意的x∈(-∞,+∞),恒有g(x)=f(x),
由已知条件可得,k≤f(x)在(-∞,+∞)恒成立
∴k≤f(x)min
∵f(x)=x2+x+
1
ex
-3

∴f′(x)=2x+1-
1
ex
,令f′(x)=0得x=0,
当x>0时,f′(x)>0,当x<0时,f′(x)<0,
∴f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数,
∴当x=0时函数f(x)的最小,最小值为-2,
∴k≤-2,即k的最大值为-2
故选A.
点评:本题以新定义为载体,主要考查了阅读、转化的能力,解决本题的关键是利用已知定义转化为函数的恒成立问题,结合函数的性质可进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛二模)一同学为研究函数f(x)=
1+x2
+
1+(1-x)2
(0≤x≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC点P是边BC上的一动点,设CP=x,则AP+PF=f(x),请你参考这些信息,推知函数g(x)=4f(x)-9的零点的个数是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)若a,b∈R,i是虚数单位,a+(b-2i)i=1+i,则a+b为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)“a≥3”是“?x∈[1,2],x2-a≤0”为真命题的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)执行如图所示的程序框图.若输出S=31,则框图中①处可以填入(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)下列函数中,与函数y=
1
3x
定义域相同的函数为(  )

查看答案和解析>>

同步练习册答案