(本小题满分13分)设数列
的前
项和为
.已知
,
,
.
(1)写出
的值,并求数列
的通项公式;
(2)记
为数列
的前
项和,求
;
(3)若数列
满足
,
,求数列
的通项公式.
(1)
;(2)
;(3)
。
【解析】
试题分析:(Ⅰ)由已知得,
,
. …………………2分
由题意,
,则当
时,
.
两式相减,得
(
). ………………………3分
又因为
,
,
,
所以数列
是以首项为
,公比为
的等比数列,
所以数列
的通项公式是
(
). ………………………………4分
(Ⅱ)因为
,
所以
, ……………………5分
两式相减得,
, ………7分
整理得,
(
). ………………………………8分
(Ⅲ)
当
时,依题意得
,
,… ,
.
相加得,
.
…………………11分
依题意
.
因为
,所以
(
).
显然当
时,符合.
所以
(
). …………………13分
考点:数列通项公式的求法。错位相减法求数列前n项和。
点评:我们要熟练掌握求数列通项公式的方法。公式法是求数列通项公式的基本方法之一,常用的公式有:等差数列的通项公式、等比数列的通项公式及公式
。此题的第一问求数列的通项公式就是用公式
,用此公式要注意讨论
的情况。
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com