精英家教网 > 高中数学 > 题目详情
6.计算${C}_{3n}^{35-n}$+${C}_{n+18}^{3n}$=28.

分析 根据组合数的意义,列出不等式组,求出n的值,再化简${C}_{3n}^{35-n}$+${C}_{n+18}^{3n}$即可.

解答 解:根据题意,得$\left\{\begin{array}{l}{3n≥35-n}\\{n+18≥3n}\end{array}\right.$,
解得$\frac{35}{4}$≤n≤9;
又n∈N*
∴n=9;
∴${C}_{3n}^{35-n}$+${C}_{n+18}^{3n}$=${C}_{27}^{26}$+${C}_{27}^{27}$=27+1=28.
故答案为:28.

点评 本题考查了组合数公式的应用问题,也考查了不等式组的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.sin420°的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{{\begin{array}{l}{x+\frac{1}{2},x∈[1,\frac{3}{2})}\\{{2^{x-2}}+1,x∈[\frac{3}{2},3)}\end{array}}$.若存在x1,x2,当1≤x1<x2<3时,f(x1)=f(x2),则$\frac{{f({x_2})}}{x_1}$的取值范围是($\frac{4}{3}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对于数列{an},如果存在正整数k,使得an-k+an+k=2an,对于一切n∈N*,n>k都成立,则称数列{an}为k-等差数列.
(1)若数列{an}为2-等差数列,且前四项分别为2,-1,4,-3,求a8+a9的值;
(2)若{an}是3-等差数列,且an=-n+sinωn(ω为常数),求ω的值,并求当ω取最小正值时数列{an}的前3n项和S3n
(3)若{an}既是2-等差数列,又是3-等差数列,证明{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.复数z=(3m-2)+(m-8)i,m∈R,
(1)m为何值时,z是纯虚数?
(2)若C${\;}_{m}^{2}$=15(m∈N*),求m的值,并指出此时复数z在复平面上对应的点位于第几象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{1}{3}$x3+$\frac{m+1}{2}{x}^{2}$+2+$\frac{1}{x}$在[1,+∞)上单调递增,当实数m取得最小值时,若存在点Q,使得过点Q的直线与曲线y=f(x)围成两个封闭图形时,这两个封闭图形的面积总相等,则点Q的坐标为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等比数列{an}中,a6=2,公比q>0,则log2a1+log2a2+…+log2a11=11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f′(x)-g(x)(f′(x)为函数f(x)的导函数)在[a,b]上有且只有两个不同的零点,则称f(x)是g(x)在[a,b]上的“关联函数”.若f(x)=$\frac{x^3}{3}-\frac{{3{x^2}}}{2}$+4x是g(x)=2x+m在[0,3]上的“关联函数”,则实数m的取值范围是(  )
A.$({-\frac{9}{4},-2}]$B.[-1,0]C.(-∞,-2]D.$({-\frac{9}{4},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知z1=5+10i,z2=3-4i,$\frac{1}{z}=\frac{1}{z_1}+\frac{1}{{|{z_2}|}}$,求z.

查看答案和解析>>

同步练习册答案