【题目】(本小题满分12分)
如图,四棱锥的底面为菱形,平面,,
分别为的中点,.
(Ⅰ)求证:平面平面.
(Ⅱ)求平面与平面所成的锐二面角的余弦值.
【答案】.证明:(Ⅰ)∵四边形是菱形,
∴.
在中,,,
∴.
∴,即.
又, ∴.…………………2分
∵平面,平面,
∴ .又∵,
∴平面,………………………………………4分
又∵平面,
平面平面. ………………………………6分
(Ⅱ)解法一:由(1)知平面,而平面,
∴平面平面………………………6分
∵平面,∴.
由(Ⅰ)知,又
∴平面,又平面,
∴平面平面.…………………………8分
∴平面是平面与平面的公垂面.
所以,就是平面与平面所成的锐二面角的平面角.……9分
在中,,即.……………10分
又,
∴.
所以,平面与平面所成的锐二面角的余弦值为.…………12分
理(Ⅱ)解法二:以为原点,、分别为轴、轴的正方向,
建立空间直角坐标系,如图.
因为,,∴、、、6分
则,,.………7分
由(Ⅰ)知平面,
故平面的一个法向量为.……………………8分
设平面的一个法向量为,
则,即,令,
则. …………………10分
∴.
所以,平面与平面所成的锐二面角的余弦值为.……………12分
【解析】
试题分析:(Ⅰ)∵四边形是菱形,
∴.
在中,,,
∴.
∴,即.
又, ∴.…………………2分
∵平面,平面,
∴ .又∵,
∴平面,………………………………………4分
又∵平面,
平面平面. ………………………………6分
(Ⅱ)解法一:由(1)知平面,而平面,
∴平面平面………………………7分
∵平面,∴.
由(Ⅰ)知,又
∴平面,又平面,
∴平面平面.…………………………9分
∴平面是平面与平面的公垂面.
所以,就是平面与平面所成的锐二面角的平面角.……10分
在中,,即.……………11分
又,
∴.
所以,平面与平面所成的锐二面角的余弦值为.…………14分
理(Ⅱ)解法二:以为原点,、分别为轴、轴的正方向,建立空间直角坐标系,如图所示.因为,,所以,
、、、,…………7分
则,,.………8分
由(Ⅰ)知平面,
故平面的一个法向量为.……………………9分
设平面的一个法向量为,
则,即,令,
则. …………………11分
∴.
所以,平面与平面所成的锐二面角的余弦值为.……14分
科目:高中数学 来源: 题型:
【题目】已知正四棱柱ABCD﹣A1B1C1D1(底面是正方形,侧棱垂直于底面)的8个顶点都在球O的表面上,AB=1,AA1′=2,则球O的半径R=;若E,F是棱AA1和DD1的中点,则直线EF被球O截得的线段长为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高考数学试题中共有10道选择题,每道选择题都有4个选项,其中有且仅有一个是正确的.评分标准规定:“每题只选1项,答对得5分,不答或答错得0分.”某考生每道题都给出了一个答案,已确定有6道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜,试求出该考生:
(1)得50分的概率;
(2)得多少分的可能性最大;
(3)所得分数ξ的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:
①集合与集合是相等集合;
②不存在实数,使为奇函数;
③若,且f(1)=2,则;
④对于函数 在同一直角坐标系中,若,则函数的图象关于直线对称;
⑤对于函数 在同一直角坐标系中,函数与的图象关于直线对称;其中正确说法是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:在△ABC中,若AB<BC,则sinC<sinA;命题q:已知a∈R,则“a>1”是“ <1”的必要不充分条件.在命题p∧q,p∨q,(¬p)∨q,(¬p)∧q中,真命题个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】凸四边形PABQ中,其中A,B为定点,AB= ,P,Q为动点,满足AP=PQ=QB=1.
(1)写出cosA与cosQ的关系式;
(2)设△APB和△PQB的面积分别为S和T,求S2+T2的最大值,以及此时凸四边形PABQ的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com