精英家教网 > 高中数学 > 题目详情
(2011•丰台区二模)已知数列{an}的前n项和为Sn,且Sn=n2.数列{bn}为等比数列,且b1=1,b4=8.
(1)求数列{an},{bn}的通项公式;
(2)若数列{cn}满足cn=abn,求数列{cn}的前n项和Tn
(3)在(2)的条件下,数列{cn}中是否存在三项,使得这三项成等差数列?若存在,求出此三项;若不存在,说明理由.
分析:(1)对于数列{an},已知Sn=n2,利用递推公式可求当n≥2时,an=Sn-Sn-1,当n=1时,a1=S1=1可求an,对于数列{bn},是等比数列,设公比为q,及b1=1,b4=b1q3=8,可求q,进而可求bn
(2)由题意可得,cn=abn=2bn-1=2n-1,结合数列的特点可考虑利用分组求和,结合等差数列及等比数列的求和公式可求;
(3)假设数列{cn}中存在三项cm,ck,cl成等差数列,则2ck=cl+cm,由(2)可得2(2k-1)=(2m-1)+(2l-1),变形可得2•2k=2m+2l=2m(1+2l-m),进而可变形为2k+1-m-2l-m=1,由整数的性质可得矛盾,即可以得打结论.
解答:解:(1)∵数列{an}的前n项和为Sn,且Sn=n2
∴当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1.
当n=1时,a1=S1=1亦满足上式,
故an=2n-1,(n∈N*).       
又数列{bn}为等比数列,设公比为q,
∵b1=1,b4=b1q3=8,∴q=2.
∴bn=2n-1(n∈N*).                      
(2)cn=abn=2bn-1=2n-1
Tn=c1+c2+c3+…cn=(21-1)+(22-1)+…+(2n-1)=(21+22+…2n)-n=
2(1-2n)
1-2
-n

所以 Tn=2n+1-2-n.                               
(3)假设数列{cn}中存在三项cm,ck,cl成等差数列,不妨设m<k<l(m,k,l∈N*)
因为 cn=2n-1,
所以 cm<ck<cl,且三者成等差数列.
所以 2ck=cl+cm
即2(2k-1)=(2m-1)+(2l-1),
变形可得:2•2k=2m+2l=2m(1+2l-m
所以 
2k+1
2m
=1+2l-m
,即2k+1-m=1+2l-m
所以 2k+1-m-2l-m=1.
因为m<k<l(m,k,l∈N*),
所以 2k+1-m,2l-m均为偶数,而1为奇数,
所以等式不成立.
所以数列{cn}中不存在三项,使得这三项成等差数列.
点评:本题综合考查等比数列、与等差数列,涉及数列的等差、等比的性质、等差数列的判定以及数列的求和,需要全面掌握数列的有关性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•丰台区二模)已知函数f(x)=x2-2x,g(x)=ax+2(a>0),若?x1∈[-1,2],?x2∈[-1,2],使得f(x1)=g(x2),则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丰台区二模)由1,2,3,4,5组成没有重复数字且2与5不相邻的四位数的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丰台区二模)已知a>0且a≠1,函数y=logax,y=ax在同一坐标系中的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丰台区二模)已知x,y的取值如下表:从散点图可以看出y与x线性相关,且回归方程为
y
=0.95x+a
,则a=(  )
x 0 1 3 4
y 2.2 4.3 4.8 6.7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丰台区二模)如图所示,已知
AB
=2
BC
OA
=
a
OB
=
b
OC
=
c
,则下列等式中成立的是(  )

查看答案和解析>>

同步练习册答案