精英家教网 > 高中数学 > 题目详情
(2013•南通三模)如图,在四棱锥P-ABCD中,底面ABCD是矩形,四条侧棱长均相等.
(1)求证:AB∥平面PCD;
(2)求证:平面PAC⊥平面ABCD.
分析:(1)由矩形ABCD,对边平行得到AB∥CD,结合线面平行的判定定理得到AB∥平面PCD;
(2)连结BD,交AC于点O,连结PO,由在矩形ABCD中,点O为AC,BD的中点,可得PO⊥AC,PO⊥BD,进而由线面垂直的判定定理得到PO⊥平面ABCD,进而由面面垂直的判定定理得到平面平面PAC⊥平面ABCD.
解答:证明:(1)在矩形ABCD中,AB∥CD,
又AB?平面PCD,CD?平面PCD,
所以AB∥平面PCD.        …(6分)
(2)如图,连结BD,交AC于点O,连结PO,
在矩形ABCD中,点O为AC,BD的中点,
又PA=PB=PC=PD,
故PO⊥AC,PO⊥BD,…(9分)
又AC∩BD=O,AC,BD?平面ABCD,
所以PO⊥平面ABCD,…(12分)
又PO?平面PAC,
所以平面PAC⊥平面ABCD.                 …(14分)
点评:本题考查的知识点是平面与平面垂直的判定,直线与平面平行的判定,考查空间想象能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•南通三模)已知集合A=(-2,1],B=[-1,2),则A∪B=
(-2,2)
(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通三模)设复数z满足(3+4i)z+5=0(i是虚数单位),则复数z的模为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通三模)根据某固定测速点测得的某时段内过往的100辆机动车的行驶速度(单位:km/h)绘制的频率分布直方图如图所示.该路段限速标志牌提示机动车辆正常行驶速度为60km/h~120km/h,则该时段内非正常行驶的机动车辆数为
15
15

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通三模)在平面直角坐标系xOy中,设点P为圆C:(x-1)2+y2=4上的任意一点,点Q(2a,a-3)(a∈R),则线段PQ长度的最小值为
5
-2
5
-2

查看答案和解析>>

同步练习册答案