精英家教网 > 高中数学 > 题目详情
a
b
c
是任意的非零平面向量,且相互不共线,则
(
a
b
)•
c
-(
c
a
)•
b
=
0

|
a
|-|
b
|<|
a
-
b
|

(
b
c
)
a
-(
c
a
)
b
不与
c
垂直;
(3
a
+2
b
)•(3
a
-2
b
)
=9|
a
|2-4|
b
|2
中是真命题的有
 
分析:利用数乘的定义判断出①错;利用向量的运算法则得到的模的性质判断出②对;利用向量垂直的充要条件判断出③错;利用向量的运算律判断出④对.
解答:解:对于①,因为(
a
b
)•
c
是与
c
共线的,而(
c
a
)•
b
是与
b
共线的,所以①错
对于②利用向量模的性质由|
a
|-|
b
|≤|
a
-
b
|
当两个向量同向时取等号,故②对
对于③因为[(
b
c
)
a
-(
c
a
)
b
]•
c
=[(
b
c
)
a•
c
-(
c
a
)
b
c
 =0
,故(
b
c
)
a
-(
c
a
)
b
c
,故③错
对于④,(3
a
+2
b
)•(3
a
-2
b
)=9
a
2
-4
b
2
=9|
a
|2-4|
b
|2
,故④对
故答案为②④
点评:本题考查向量模的性质、向量垂直的充要条件、向量的运算律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
b
c
是任意的非零平面向量且互不共线,以下四个命题:
(
a
b
)•
c
-(
c
a
)•
b
=
0

|
a
|+|
b
|>|
a
+
b
|

(
b
c
)•
a
-(
c
a
)•
b
c
垂直

④两单位向量
e1
e2
平行,则
e1
e2
=1

⑤将函数y=2x的图象按向量
a
平移后得到y=2x+6的图象,
a
的坐标可以有无数种情况.
其中正确命题是
②③⑤
②③⑤
(填上正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零平面向量,且相互不共线,则
(
a•
b
)
c
-(
c
a
)
b
=0

|
a
|-|
b
|<|
a
-
b
|

(
b
c
)
a
-(
c
a
)
b
不与
c
垂直         
(3
a
+2
b
)(3
a
-2
b
)=9|
a
|2-4|
b
|2
中,是真命题的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零向量,且相互不共线,给定下列结论
①(
a
b
)•
c
-(
c
a
)•
b
=
0
   
②|
a
|-|
b
|<|
a
-
b
|
③(
b
c
)•
a
-(
c
a
)•
b
不与
c
垂直
④(3
a
+2
b
)•(3
a
-2
b
)=9
a2
-4
b2

其中正确的叙述有
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是任意的非零向量,且相互不共线,有下列命题:
(1)(
a
b
c
-(
c
a
b
=0;
(2)|
a
|-|
b
|<|
a
-
b
|;
(3)(
b
c
a
-(
a
c
b
不与
c
垂直;
(4)(3
a
+4
b
)•(3
a
-4
b
)=9|
a
|2-16|
b
|2
其中,是真命题的有(  )

查看答案和解析>>

同步练习册答案