精英家教网 > 高中数学 > 题目详情
试探究一次函数y=mx+d(x∈R)的单调性,并证明你的结论.
考点:函数单调性的判断与证明
专题:函数的性质及应用
分析:利用函数单调性的定义证明,注意对m的取值讨论.
解答: 解:m>0时,函数y=mx+d(x∈R)的单调递增;
m<0时,函数y=mx+d(x∈R)的单调递减.
证明如下:
设任意的x1,x2∈R,且x1<x2,则y1-y2=m(x1-x2),
∵x1,x2∈R,且x1<x2,∴x1-x2<0,
∴当m>0时,m(x1-x2)<0,即y1<y2,此时函数y=mx+d(x∈R)的单调递增;
当m<0时,m(x1-x2)>0即y1>y2,此时函数y=mx+d(x∈R)的单调递减.
点评:考查利用函数单调性的定义证明函数单调性的方法,解题是要对m的值进行讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个六面体的三视图如图所示,其左视图是边长为2的正方形,则该六面体的表面积是(  )
A、12+2
5
B、14+2
5
C、16+2
5
D、18+2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),x∈R“y=f(x)为奇函数”是“函数y=|f(x)|的图象关于y轴对称”是的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)上一个纵坐标为2的点到焦点F的距离为3. 
(Ⅰ)求抛物线C的方程;
(Ⅱ)设点P(0,2),过P作直线l1,l2分别交抛物线于点A,B和点M,N,直线l1,l2的斜率分别为k1和k2,且k1k2=-
3
4
.写出线段AB的长|AB|关于k1的函数表达式,并求四边形AMBN面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asin(2ωx+
π
6
)+
a
6
+b
,(x∈R,a>0,ω>0)的最小正周期为π,函数f(x)的最大值是
7
4
,最小值是 
3
4

(1)求ω,a,b的值;
(2)求出f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=3,π<α<
2

(1)求cosα的值     
(2)求sin(
π
2
+α)+sin(π+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+bx(a,b∈R),g(x)=
1
2
x2-(m+
1
m
)x(m>0),且y=f(x)在点(1,f(1))处的切线方程为x-y-1=0.
(Ⅰ)求a,b的值;
(Ⅱ)若函数h(x)=f(x)+g(x)在区间(0,2)内有且仅有一个极值点,求m的取值范围;
(Ⅲ)设M(x,y)(x>m+
1
m
)为两曲线y=f(x)+c(c∈R),y=g(x)的交点,且两曲线在交点M处的切线分别为l1,l2.若取m=1,试判断当直线l1,l2与x轴围成等腰三角形时c值的个数并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点P(0,
A
2
)是函数y=Asin(
9
x+φ)(其中A>0,φ∈[0,2π))的图象与y轴的交点,点Q是它与x轴的一个交点,点R是它的一个最低点.
(Ⅰ)求φ的值;
(Ⅱ)若PQ⊥PR,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1,其长轴长为2
2
,直线l1:y=-1与C只有一个公共点A1,直线l2:y=1与C只有一个公共点A2. 
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是l1上(除A1外)的动点,连结A2P交椭圆于另外一点B,连结OP交椭圆于C,D两点(C在D的下方),直线A1B,A1C,A1D分别交直线l2于点E,F,G,若|EF|,|A2F|,|GF|成等差数列,求点P的坐标.

查看答案和解析>>

同步练习册答案