如图,
是抛物线
上的两动点(
异于原点
),且
的角平分线垂直于
轴,直线
与
轴,
轴分别相交于
.
(1) 求实数
的值,使得
;
(2)若中心在原点,焦点在
轴上的椭圆
经过
. 求椭圆
焦距的最大值及此时
的方程.
![]()
(1)
;(2)
.
【解析】本题主要考查直线的斜率、抛物线的切线、两直线平行的位置关系,椭圆的基本性质,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合思想、
化归与转化思想.
解: (1) 设![]()
由
的角平分线垂直于Y轴知,直线OM与直线MN的倾斜角互补,从而斜率之和等于0,即
化简得
. 3分
由点
知直线MN的方程为
.
分别在其中令Y=0及X=0得
. 5分
将B,M,N的坐标代入
中得
, 7分
所以
8分
(2) 设椭圆
的方程为
,
将
,
代入,得
, 9分
解得
, 由
. 10分
椭圆
的焦距
12分
当且仅当
时,上式取等号, 故
, 13分
此时椭圆
的方程为
14分
科目:高中数学 来源: 题型:
3
| ||
| 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| 2 |
| 5 |
| 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| 2 |
| 5 |
| 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
已知抛物线
(
).抛物线上的点
到焦点的距离为2
(1)求抛物线的方程和
的值;
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com