精英家教网 > 高中数学 > 题目详情
2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一条弦所在的直线的方程为x-y+3=0,弦的中点坐标为(-2,1),求椭圆的离心率.

分析 设出以M为中点的弦的两个端点的坐标,代入椭圆的方程相减,把中点公式代入,可得弦的斜率与a,b的关系式.从而求得椭圆的离心率.

解答 解:显然M(-2,1)在椭圆内,设直线与椭圆的交点A(x1,y1),B(x2,y2),
则$\frac{{{x}_{1}}^{2}}{{a}^{2}}+\frac{{{y}_{1}}^{2}}{{b}^{2}}=1$,$\frac{{{x}_{2}}^{2}}{{a}^{2}}+\frac{{{y}_{2}}^{2}}{{b}^{2}}=1$,相减得:$\frac{({x}_{2}-{x}_{1})({x}_{2}+{x}_{1})}{{a}^{2}}$+$\frac{({y}_{2}+{y}_{1})({y}_{2}-{y}_{1})}{{b}^{2}}$=0,
整理得:k=-$\frac{{b}^{2}({x}_{2}+{x}_{1})}{{a}^{2}({y}_{2}+{y}_{1})}$=1,
又弦的中点坐标是(-2,1),
∴$\left\{\begin{array}{l}{x}_{2}+{x}_{1}=-4\\{y}_{2}{+y}_{1}=2\end{array}\right.$,
∴$\frac{{b}^{2}}{{a}^{2}}$=$\frac{1}{2}$,
则椭圆的离心率是e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{\sqrt{2}}{2}$.
椭圆的离心率:$\frac{\sqrt{2}}{2}$.

点评 本题考查椭圆的标准方程和简单性质,中点公式及斜率公式的应用,以及直线方程,属于基础题.本题解题中直接利用点差法巧妙用上了中点坐标公式与弦的斜率,方法极为巧妙,此方法即为通常所说的点差法,研究弦中点问题时经常采用此方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,A,B,C,D是平面上的任意四点,下列式子中正确的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{BC}$+$\overrightarrow{DA}$B.$\overrightarrow{AC}$+$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overrightarrow{AD}$C.$\overrightarrow{AC}$+$\overrightarrow{DB}$=$\overrightarrow{DC}$+$\overrightarrow{BA}$D.$\overrightarrow{AB}$+$\overrightarrow{DA}$=$\overrightarrow{AC}$+$\overrightarrow{DB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,OA是南北方向的一条公路,OB是北偏东45°方向的一条公路,某风景区的一段边界为曲线C.为方便游客光,拟过曲线C上的某点分别修建与公路OA,OB垂直的两条道路PM,PN,且PM,PN的造价分别为5万元/百米,40万元/百米,建立如图所示的直角坐标系xoy,则曲线符合函数y=x+$\frac{{4\sqrt{2}}}{x^2}$(1≤x≤9)模型,设PM=x,修建两条道路PM,PN的总造价为f(x)万元,题中所涉及的长度单位均为百米.
(1)求f(x)解析式;
(2)当x为多少时,总造价f(x)最低?并求出最低造价.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)是定义域R上的增函数,?x,y∈R,f(x+y)=f(x)+f(y)-1,且f(3)=3,记an=f(n)(n∈N*),则数列{an}的前n项和Sn=$\frac{n(n+4)}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若点P(x0,y0)在圆C:x2+y2=r2的内部,则直线xx0+yy0=r2与圆C的位置关系是(  )
A.相交B.相切C.相离D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.全称命题:?x∈R,x2≤0的否定是(  )
A.?x∈R,x2≤0B.?x0∈R,x${\;}_{0}^{2}$>0C.?x0∈R,x${\;}_{0}^{2}$<0D.?x0∈R,x${\;}_{0}^{2}$≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义在R上的函数f(x)满足:
①f(x)是偶函数;
②f(x-1)是奇函数;
③f(x)=$\left\{\begin{array}{l}{0,x=0}\\{lnx,x∈(0,1]}\end{array}\right.$.
则方程f(x)+2=f(2)在区间(-2,10)内的所有实根之和为(  )
A.22B.24C.26D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.最新《交通安全法》实施后,某市管理部门以周为单位,记录的每周查处的酒驾人数与该周内出现的交通事故数量如下:
酒驾人数x801471211009610387
交通事故y19313023252420
通过如表数据可知,酒驾人数x与交通事故数y之间是(  )
A.正相关B.负相关C.不相关D.函数关系

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知平面直角坐标系上一动点P(x,y)到点A(-2,0)的距离是点P到点B(1,0)的距离的2倍.
(1)求点P的轨迹方程;
(2)过点A的直线l与点P的轨迹C相交于E,F两点,点M(2,0),则是否存在直线l,使S△EFM取得最大值,若存在,求出此时l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案