精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式是定义域上的单调函数,则a的取值范围是


  1. A.
    (1,+∞)
  2. B.
    [2,+∞)
  3. C.
    (1,2)
  4. D.
    (1,2]
D
分析:因为f(x)是定义域R上的单调函数,所以可能为单调递增函数或是单调递减函数.由对数式f(x)=loga(x-1)+3,(x>2)知底数a>0,所以f(x)=ax-1在x≤2上单调递增,最小值为f(2)=2a-1,由于f(x)在R上是单调函数,所以f(x)=loga(x-1)+3,(x>2)上也是单调递增,故a>1,同时还应满足loga(2-1)+3≤2a-1.
解答:因为f(x)是定义域R上的单调函数,所以a应满足:,解得:1<a≤2,故选D.
点评:本题考查对分段函数和函数单调性的理解掌握程度,若分段函数具有单调性关键点和难点都是在分段点处函数值的比较.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、已知函数f(x+1)是奇函数,则函数f(x-1)的图象关于
(2,0)
对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)是偶函数,当x2>x1>1时,[f(x2)-f(x1)]( x2-x1)>0恒成立,设a=f (-
1
2
),b=f(2),c=f(3),则a,b,c的大小关系为(  )
A、b<a<c
B、c<b<a
C、b<c<a
D、a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f (x+1)是奇函数,f (x-1)是偶函数,且f (0)=2,则f (2012)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)是偶函数,当1<x1<x2时,
f(x2)-f(x1)
x2-x1
>0
恒成立,设a=f(-
1
2
),b=f(2),c=f(3),则a,b,c的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)是偶函数,当x2>x1>1时,[f(x2)-f(x1)](x2-x1)>0恒成立,设a=f(-
12
),b=f(2),c=f(3)
,则a,b,c的大小关系为(按从小到大)
b<a<c
b<a<c

查看答案和解析>>

同步练习册答案