精英家教网 > 高中数学 > 题目详情
8.角α的终边经过点(2,-1),则sinα+cosα的值为(  )
A.-$\frac{{3\sqrt{5}}}{5}$B.$\frac{{3\sqrt{5}}}{5}$C.-$\frac{{\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

分析 由题意可得x=2,y=-1,r=$\sqrt{5}$,可得sinα和cosα的值,从而求得sinα+cosα 的值.

解答 解:∵已知角α的终边经过点(2,-1),则 x=2,y=-1,r=$\sqrt{5}$,
∴sinα=-$\frac{\sqrt{5}}{5}$,cosα=$\frac{2\sqrt{5}}{5}$,
∴sinα+cosα=-$\frac{\sqrt{5}}{5}$,
故选D.

点评 本题主要考查任意角的三角函数的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为03,则剩下的四个号码依次是15,27,39,51.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是某几何体的三视图且a=b,则该几何体主视图的面积为(  )
A.$\sqrt{6}$B.$\frac{3}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,圆锥的轴截面SAB是正三角形,O为底面中心,M为线段SO中点,动点P在圆锥底面内(包括圆周),若AM⊥MP,则点P的轨迹为(  )
A.线段B.C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线C与双曲线$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{6}=1$有共同的渐近线,则双曲线C的离心率为$\frac{\sqrt{7}}{2}$或$\frac{\sqrt{21}}{3}$,若此双曲线C还过点M(2$\sqrt{2}$,$\sqrt{3}$),则双曲线C的方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若等边三角形ABC的边长为4,E是中线BD的中点,则$\overrightarrow{AE}$•$\overrightarrow{EC}$=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=2x+x-4的零点x0∈(a,b),且b-a=1,a,b∈N,则a+b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知曲线C1:y2=tx(y>0,t>0)在点M($\frac{4}{t}$,2)处的切线与曲线C2:y=ex+1-1也相切,则tln$\frac{4{e}^{2}}{t}$的值为(  )
A.4e2B.8eC.2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设U=R,M={y|y=2x+1,-$\frac{1}{2}$≤x≤$\frac{1}{2}$},N={x|y=lg(x2+3x)},则(∁UM)∩N=(  )
A.(-∞,-3]∪(2,+∞)B.(-∞,-3)∪(0,+∞)C.(-∞,-3)∪(2,+∞)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

同步练习册答案